Age, Biography and Wiki
Allen Taflove was born on 14 June, 1949 in Chicago, Illinois, U.S.. Discover Allen Taflove's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 72 years old?
Popular As |
N/A |
Occupation |
N/A |
Age |
71 years old |
Zodiac Sign |
Gemini |
Born |
14 June, 1949 |
Birthday |
14 June |
Birthplace |
Chicago, Illinois, U.S. |
Date of death |
April 25, 2021 |
Died Place |
N/A |
Nationality |
United States |
We recommend you to check the complete list of Famous People born on 14 June.
He is a member of famous with the age 71 years old group.
Allen Taflove Height, Weight & Measurements
At 71 years old, Allen Taflove height not available right now. We will update Allen Taflove's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.
Physical Status |
Height |
Not Available |
Weight |
Not Available |
Body Measurements |
Not Available |
Eye Color |
Not Available |
Hair Color |
Not Available |
Dating & Relationship status
He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.
Family |
Parents |
Not Available |
Wife |
Not Available |
Sibling |
Not Available |
Children |
Not Available |
Allen Taflove Net Worth
His net worth has been growing significantly in 2022-2023. So, how much is Allen Taflove worth at the age of 71 years old? Allen Taflove’s income source is mostly from being a successful . He is from United States. We have estimated
Allen Taflove's net worth
, money, salary, income, and assets.
Net Worth in 2023 |
$1 Million - $5 Million |
Salary in 2023 |
Under Review |
Net Worth in 2022 |
Pending |
Salary in 2022 |
Under Review |
House |
Not Available |
Cars |
Not Available |
Source of Income |
|
Allen Taflove Social Network
Instagram |
|
Linkedin |
|
Twitter |
|
Facebook |
|
Wikipedia |
|
Imdb |
|
Timeline
As of August 21, 2020, in addition to the books noted above, Prof. Taflove had authored or co-authored a total of 27 articles or chapters in books and magazines, 152 refereed journal papers, and 14 U.S. patents. In 2002, he was named to the original ISI highly cited researcher list of the Institute for Scientific Information (ISI). His books, journal papers, and U.S. patents have received a total of 42,058 citations according to Google Scholar®, and his h-index is reported as 68 (Google Scholar).
Prof. Taflove's interview, "Numerical Solution," on pages 5 and 6 of the January 2015 focus issue of Nature Photonics marking the 150th anniversary of the publication of Maxwell's equations. Here, Nature Photonics cited Prof. Taflove as the "father of the finite-difference time-domain technique":
According to a Google Scholar search conducted in September 2012 by the Institute of Optics of the University of Rochester, Prof. Taflove's Computational Electrodynamics: The Finite-Difference Time-Domain Method is the 7th most-cited book in physics, with an updated total of 20,666 Google Scholar citations as of Aug. 21, 2020.
The Google Scholar® search conducted in Sept. 2012 by the Institute of Optics of the University of Rochester for the 12 most-cited books in physics:
In 2011, Prof. Taflove was named as an inductee of the Amateur Radio Hall of Fame by CQ Magazine in recognition of his research achievements in computational electrodynamics. He had been an FCC-licensed amateur radio operator since 1963 holding the call sign WA9JLV, and had credited amateur radio with spurring his interest in electrical engineering in general, and electromagnetic fields and waves in particular. He had served for many years as the trustee of the Northwestern University Amateur Radio Society, which operates the FCC-licensed club station W9BGX.
Beginning in 2003, Prof. Taflove had collaborated with Prof. Vadim Backman of Northwestern University's Biomedical Engineering Department in research aimed at the minimally invasive detection of early-stage human cancers of the colon, pancreas, lung, and ovaries. The techniques being pursued are based upon a spectroscopic microscopy analysis of light backscattered from histologically normal tissue located away from a neoplastic lesion in what has been termed the field effect. This may lead to a new paradigm in cancer screening where, for example, lung cancer could be reliably detected by analyzing a few cells brushed from the interior surface of a person's cheek. On May 5, 2008, a large collaboration headed by Prof. Backman (with Prof. Taflove as a co-investigator) was awarded a five-year, $7.5-million grant from the National Institutes of Health to pursue this biophotonics technology to develop a noninvasive test for population-wide colon cancer screening.
FDTD modeling has helped establish the fundamental physics foundation of Prof. Backman's spectroscopic microscopy technique for early detection of human cancers. Work has progressed from the early FDTD studies reported in Dec. 2008 in Proc. National Academy of Sciences USA to the analytical and FDTD modeling advances reported in July 2013 in Physical Review Letters. The latter paper rigorously shows that spectroscopic microscopy permits determining the nature of deeply subdiffraction three-dimensional refractive-index fluctuations of a linear, label-free dielectric medium in the far zone. Using visible light, this means that statistical fluctuations of intracellular media as fine as 20 nm can be characterized. The resulting wide range of distance scales that can be characterized within a cell may permit correlations to be developed appropriate for field-effect detection of a wide variety of early-stage cancers with clinically useful sensitivity and specificity.
Prof. Taflove was the first Northwestern University McCormick School faculty member to be named both Teacher of the Year and Adviser of the Year in the same academic year (2005–06). He was appointed a Northwestern University Charles Deering McCormick Professor of Teaching Excellence (2000–03) and the Bette and Neison Harris Chair in Teaching Excellence (2009–12). In addition, he received the Northwestern Alumni Association Excellence in Teaching Award (2008), and was selected by Northwestern's Associated Student Government for its honor roll of best teachers in 2002, 2003, 2004, 2005, 2007, 2008, 2009, and 2016. In 2010, he received the Chen-To Tai Distinguished Educator Award of the IEEE Antennas and Propagation Society.
Since about 2000, FDTD techniques have emerged as a primary means to computationally model many scientific and engineering problems dealing with electromagnetic wave interactions with material structures. Current FDTD modeling applications range from near-DC (ultralow-frequency geophysics involving the entire Earth-ionosphere waveguide) through microwaves (radar signature technology, antennas, wireless communications devices, digital interconnects, biomedical imaging/treatment) to visible light (photonic crystals, nanoplasmonics, solitons, microscopy and lithography, and biophotonics). Both commercial FDTD software suites and free-software/open-source or closed-source FDTD projects are available which permit detailed Maxwell's equations modeling of electromagnetic wave phenomena and engineered systems spanning much of the electromagnetic spectrum. To a large degree, all of these software constructs derive directly from FDTD techniques first reported by Prof. Taflove and his students over the past 45 years.
In 1995, Prof. Taflove authored the textbook/research monograph, Computational Electrodynamics: The Finite-Difference Time-Domain Method. In 1998, he edited the research monograph, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method. Subsequently, he and Prof. Susan Hagness of the University of Wisconsin-Madison expanded and updated the 1995 book in a year-2000 second edition, and then further expanded and updated the 2000 second edition in a 2005 third edition. In 2013, Prof. Taflove and Dr. Ardavan Oskooi of Kyoto University and Prof. Steven G. Johnson of MIT edited the research monograph, Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology.
The descriptors "finite difference time domain" and "FDTD" coined by Prof. Taflove in 1980 have since become widely used, having appeared in this exact form in approximately 140,000 and 250,000 Google Scholar search results, respectively, as of Aug. 21, 2020.
Allen Taflove (June 14, 1949 - April 25, 2021) was a full professor in the Department of Electrical and Computer Engineering of Northwestern's McCormick School of Engineering, since 1988. Since 1972, he pioneered basic theoretical approaches, numerical algorithms, and applications of finite-difference time-domain (FDTD) computational solutions of Maxwell's equations. He coined the descriptors "finite difference time domain" and "FDTD" in the 1980 paper, "Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic penetration problems." In 1990, he was the first person to be named a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) in the FDTD area. Prof. Taflove was the recipient of the 2014 IEEE Electromagnetics Award with the following citation: "For contributions to the development and application of finite-difference time-domain (FDTD) solutions of Maxwell's equations across the electromagnetic spectrum." He was a Life Fellow of the IEEE and a Fellow of the Optical Society (OSA). His OSA Fellow citation reads: "For creating the finite-difference time-domain method for the numerical solution of Maxwell's equations, with crucial application to the growth and current state of the field of photonics."
Taflove was born in Chicago, Illinois on June 14, 1949. He received B.S., M.S., and Ph.D. degrees in electrical engineering from Northwestern University in 1971, 1972, and 1975, respectively.