Age, Biography and Wiki

Fazlur Rahman Khan was born on 3 April, 1929 in (present‑day Bangladesh), is an architect. Discover Fazlur Rahman Khan's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 53 years old?

Popular As N/A
Occupation N/A
Age 53 years old
Zodiac Sign Aries
Born 3 April 1929
Birthday 3 April
Birthplace Dhaka, Bengal Presidency, British India (now Bangladesh)
Date of death (1982-03-27) Jeddah, Saudi Arabia
Died Place Jeddah, Saudi Arabia
Nationality Bangladesh

We recommend you to check the complete list of Famous People born on 3 April. He is a member of famous architect with the age 53 years old group.

Fazlur Rahman Khan Height, Weight & Measurements

At 53 years old, Fazlur Rahman Khan height not available right now. We will update Fazlur Rahman Khan's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Who Is Fazlur Rahman Khan's Wife?

His wife is Liselotte Khan

Family
Parents Not Available
Wife Liselotte Khan
Sibling Not Available
Children Yasmin Sabina Khan

Fazlur Rahman Khan Net Worth

His net worth has been growing significantly in 2022-2023. So, how much is Fazlur Rahman Khan worth at the age of 53 years old? Fazlur Rahman Khan’s income source is mostly from being a successful architect. He is from Bangladesh. We have estimated Fazlur Rahman Khan's net worth , money, salary, income, and assets.

Net Worth in 2023 $1 Million - $5 Million
Salary in 2023 Under Review
Net Worth in 2022 Pending
Salary in 2022 Under Review
House Not Available
Cars Not Available
Source of Income architect

Fazlur Rahman Khan Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia
Imdb

Timeline

2021

In 2021, director Laila Kazmi began production on a feature-length documentary film to be called Reaching New Heights: Fazlur Rahman Khan and the Skyscraper on the life and legacy of Khan. The film is produced by Kazmi's production company Kazbar Media, with development support from ITVS, which provides co-production support to independent documentaries on PBS. The film is helmed by director and producer Laila Kazmi, with associate producer Arnila Guha, and New York-based art director Begoña Lopez. It is fiscally sponsored by Film Independent.

2017

Khan was the subject of the Google Doodle on 3 April 2017, marking what would have been his 88th birthday.

2009

Khan was mentioned by President Obama in 2009 in his speech in Cairo, Egypt when he cited the achievements of America's Muslim citizens.

1982

Khan died of a heart attack on 27 March 1982 while on a trip in Jeddah, Saudi Arabia, at the age of 52. He was a general partner in SOM. His body was returned to the United States and was buried in Graceland Cemetery in Chicago.

1981

Khan designed several notable structures that are not skyscrapers. Examples include the Hajj terminal of King Abdulaziz International Airport, completed in 1981, which consists of tent-like roofs that are folded up when not in use. The project received several awards, including the Aga Khan Award for Architecture, which described it as an "outstanding contribution to architecture for Muslims". The tent-like tensile structures advanced the theory and technology of fabric as a structural material and led the way to its use for other types of terminals and large spaces.

1972

Khan was cited five times by Engineering News-Record as among those who served the best interests of the construction industry, and in 1972 he was honored with ENR's Man of the Year award. In 1973 he was elected to the National Academy of Engineering. He received honorary doctorates from Northwestern University, Lehigh University, and the Swiss Federal Institute of Technology Zürich (ETH Zurich).

1971

Among Khan's other accomplishments, he received the Wason Medal (1971) and Alfred Lindau Award (1973) from the American Concrete Institute (ACI); the Thomas Middlebrooks Award (1972) and the Ernest Howard Award (1977) from ASCE; the Kimbrough Medal (1973) from the American Institute of Steel Construction; the Oscar Faber medal (1973) from the Institution of Structural Engineers, London; the International Award of Merit in Structural Engineering (1983) from the International Association for Bridge and Structural Engineering IABSE; the AIA Institute Honor for Distinguished Achievement (1983) from the American Institute of Architects; and the John Parmer Award (1987) from Structural Engineers Association of Illinois and Illinois Engineering Hall of Fame from Illinois Engineering Council (2006).

In 1971 the Bangladesh Liberation War broke out. Khan was heavily involved with creating public opinion and garnering emergency funding for Bengali people during the war. He created the Chicago-based Bangladesh Emergency Welfare Appeal organization.

1970

In the 1970s, engineers were just starting to use computer structural analysis on a large scale. SOM was at the center of these new developments, with undeniable contributions from Khan. Graham and Khan lobbied SOM partners to purchase a mainframe computer, a risky investment at a time, when new technologies were just starting to form. The partners agreed, and Khan began programming the system to calculate structural engineering equations, and later, to develop architectural drawings.

1965

Khan pioneered several other variants of the tube structure design. One of these was the concept of applying X-bracing to the exterior of the tube to form a trussed tube. X-bracing reduces the lateral load on a building by transferring the load into the exterior columns, and the reduced need for interior columns provides a greater usable floor space. Khan first employed exterior X-bracing on his engineering of the John Hancock Center in 1965, and this can be clearly seen on the building's exterior, making it an architectural icon.

Khan developed the shear wall frame interaction system for mid high-rise buildings. This structural system uses combinations of shear walls and frames designed to resist lateral forces. The first building to use this structural system was the 35-stories Brunswick Building. The Brunswick building was completed in 1965 and became the tallest reinforced concrete structure of its time. The structural system of Brunswick Building consists of a concrete shear wall core surrounded by an outer concrete frame of columns and spandrels. Apartment buildings up to 70 stories high have successfully used this concept.

1963

Since 1963, the new structural system of framed tubes became highly influential in skyscraper design and construction. Khan defined the framed tube structure as "a three dimensional space structure composed of three, four, or possibly more frames, braced frames, or shear walls, joined at or near their edges to form a vertical tube-like structural system capable of resisting lateral forces in any direction by cantilevering from the foundation." Closely spaced interconnected exterior columns form the tube. Horizontal loads, for example from wind and earthquakes, are supported by the structure as a whole. About half the exterior surface is available for windows. Framed tubes allow fewer interior columns, and so create more usable floor space. The bundled tube structure is more efficient for tall buildings, lessening the penalty for height. The structural system also allows the interior columns to be smaller and the core of the building to be free of braced frames or shear walls that use valuable floor space. Where larger openings like garage doors are required, the tube frame must be interrupted, with transfer girders used to maintain structural integrity.

The first building to apply the tube-frame construction was the DeWitt-Chestnut Apartment Building, since renamed Plaza on DeWitt, building that Bruce Graham designed and Khan did the engineering for was completed in Chicago in 1963. This laid the foundations for the framed tube structure used in the construction of the World Trade Center.

The last major buildings engineered by Khan were the One Magnificent Mile and Onterie Center in Chicago, which employed his bundled tube and trussed tube system designs respectively. In contrast to his earlier buildings, which were mainly steel, his last two buildings were concrete. His earlier DeWitt-Chestnut Apartments building, built in 1963 in Chicago, was also a concrete building with a tube structure. Trump Tower in New York City is also another example that adapted this system.

1960

For enjoyment, Khan loved singing Rabindranath Tagore's poetic songs in Bengali. He and his wife, Liselotte, who immigrated from Austria, had one daughter who was born in 1960. In 1967, he elected to become a United States citizen.

Khan's central innovation in skyscraper design and construction was the idea of the "tube" structural system for tall buildings, including the framed tube, trussed tube, and bundled tube variants. His "tube concept", using all the exterior wall perimeter structure of a building to simulate a thin-walled tube, revolutionized tall building design. Most buildings over 40 stories constructed since the 1960s now use a tube design derived from Khan's structural engineering principles.

Khan's seminal work of developing tall building structural systems are still used today as the starting point when considering design options for tall buildings. Tube structures have since been used in many skyscrapers, including the construction of the World Trade Center, Aon Center, Petronas Towers, Jin Mao Building, Bank of China Tower and most other buildings in excess of 40 stories constructed since the 1960s. The strong influence of tube structure design is also evident in the world's current tallest skyscraper, the Burj Khalifa in Dubai. According to Stephen Bayley of The Daily Telegraph:

1955

In 1955, employed by the architectural firm Skidmore, Owings & Merrill (SOM), he began working in Chicago. He was made a partner in 1966. He worked the rest of his life side by side with fellow architect Bruce Graham. Khan introduced design methods and concepts for efficient use of material in building architecture. His first building to employ the tube structure was the Chestnut De-Witt apartment building. During the 1960s and 1970s, he became noted for his designs for Chicago's 100-story John Hancock Center and 110-story Sears Tower, since renamed Willis Tower, the tallest building in the world from 1973 until 1998.

1952

Khan attended Armanitola Government High School, in Dhaka. After that, he studied Civil Engineering in Bengal Engineering and Science University, Shibpur (present day Indian Institute of Engineering Science and Technology, Shibpur), Kolkata, India, and then received his Bachelor of Civil Engineering degree from Ahsanullah Engineering College, (now Bangladesh University of Engineering and Technology). He received a Fulbright Scholarship and a government scholarship, which enabled him to travel to the United States in 1952. There he studied at the University of Illinois at Urbana–Champaign. In three years Khan earned two master's degrees – one in structural engineering and one in theoretical and applied mechanics – and a PhD in structural engineering with thesis titled Analytical Study of Relations Among Various Design Criteria for Rectangular Prestressed Concrete Beams.

1950

The population explosion, starting with the baby boom of the 1950s, created widespread concern about the amount of available living space, which Khan solved by building upward. More than any other 20th-century engineer, Fazlur Rahman Khan made it possible for people to live and work in "cities in the sky". Mark Sarkisian (Director of Structural and Seismic Engineering at Skidmore, Owings & Merrill) said, "Khan was a visionary who transformed skyscrapers into sky cities while staying firmly grounded in the fundamentals of engineering."

1931

In contrast to earlier steel frame structures, such as the Empire State Building (1931), which required about 206 kilograms of steel per square meter and One Chase Manhattan Plaza (1961), which required around 275 kilograms of steel per square meter, the John Hancock Center was far more efficient, requiring only 145 kilograms of steel per square meter. The trussed tube concept was applied to many later skyscrapers, including the Onterie Center, Citigroup Center and Bank of China Tower.

1929

Fazlur Rahman Khan (Bengali: ফজলুর রহমান খান, Fozlur Rôhman Khan; 3 April 1929 – 27 March 1982) was a Bangladeshi-American structural engineer and architect, who initiated important structural systems for skyscrapers. Considered the "father of tubular designs" for high-rises, Khan was also a pioneer in computer-aided design (CAD). He was the designer of the Sears Tower, since renamed Willis Tower, the tallest building in the world from 1973 until 1998, and the 100-story John Hancock Center.

Fazlur Rahman Khan was born on 3 April 1929 to a Bengali Muslim family in Dacca, Bengal Presidency (present-day Bangladesh). He was from and brought up in the Khan Bari of Bhandarikandi in Madaripur, Faridpur District. His father, Khan Bahadur Abdur Rahman Khan, was a high school mathematics teacher and textbook author who eventually became the Director of Public Instruction in Bengal and after retirement served as the first Principal of Jagannath College. His mother, Khadijah Khatun, was the daughter of Abdul Basit Chowdhury, the Zamindar (aristocratic landowner) of Dulai in Pabna who traced his ancestry to a migrant from Samarkand in Turkestan. Khan's paternal uncle, Abdul Hakim Khan, was the son-in-law of Syed Abdul Jabbar, a zamindar based in Comilla.