Age, Biography and Wiki
Francis Bernard (engineer) was born on 1940 in Hanoi, French Indochina, is an Executive. Discover Francis Bernard (engineer)'s Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 83 years old?
Popular As |
N/A |
Occupation |
Executive adviser to startups |
Age |
N/A |
Zodiac Sign |
|
Born |
1940 |
Birthday |
1940 |
Birthplace |
Hanoi, French Indochina |
Nationality |
China |
We recommend you to check the complete list of Famous People born on 1940.
He is a member of famous Executive with the age years old group.
Francis Bernard (engineer) Height, Weight & Measurements
At years old, Francis Bernard (engineer) height not available right now. We will update Francis Bernard (engineer)'s Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.
Physical Status |
Height |
Not Available |
Weight |
Not Available |
Body Measurements |
Not Available |
Eye Color |
Not Available |
Hair Color |
Not Available |
Dating & Relationship status
He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.
Family |
Parents |
Not Available |
Wife |
Not Available |
Sibling |
Not Available |
Children |
Not Available |
Francis Bernard (engineer) Net Worth
His net worth has been growing significantly in 2022-2023. So, how much is Francis Bernard (engineer) worth at the age of years old? Francis Bernard (engineer)’s income source is mostly from being a successful Executive. He is from China. We have estimated
Francis Bernard (engineer)'s net worth
, money, salary, income, and assets.
Net Worth in 2023 |
$1 Million - $5 Million |
Salary in 2023 |
Under Review |
Net Worth in 2022 |
Pending |
Salary in 2022 |
Under Review |
House |
Not Available |
Cars |
Not Available |
Source of Income |
Executive |
Francis Bernard (engineer) Social Network
Instagram |
|
Linkedin |
|
Twitter |
|
Facebook |
|
Wikipedia |
|
Imdb |
|
Timeline
By 1995, Dassault Systèmes had adapted to many major technology disruptions: computer hardware had been transformed in the 1980s and 1990s; workstations had spread into industrial enterprises along with connectivity through local networks, competing with mainframes. In response, Dassault Systèmes' product offers had expanded, and addressed more industries; numerous functions were added, and configuration management developed. The company also added customers in countries including Russia, India, China, South Africa, Taiwan, Korea, Australia, and Israel. CATIA was being complete rewrittem (V5), and the strategic decision to enter the Microsoft world was ongoing. With 1,000 employees, and subsidiaries in the USA, Germany and Japan, Dassault Systèmes had reached a leading position and wanted to deploy its offers on all PCs in the industrial sector. Between 1994 and 1995, Its net profit increased by 40% and the turnover by 10%.
In 1995, after managing the company for 14 years, Bernard quit his CEO position and handed it over to Bernard Charlès.
To comply with the partnership, Bernard and his team had to understand, translate and implement IBM's requirements, while properly positioning new products to accommodate CADAM, already in the IBM's catalogue for years. The similar look and feel as well as the interface between the two software packages (already developed at Dassault Aviation) was decisive in convincing the IBM sales force of the CAD/CAM solution consistency, and complementarity between CATIA and CADAM. This focus on consistency was rewarded at the end of 1991 when Dassault Systèmes acquired CADAM from IBM, which had acquired it two years earlier. In exchange, IBM took 10% of Dassault Systèmes shareholding. The deal also included an agreement whereby Dassault Systèmes became IBM's only CAD/CAM partner.
Meanwhile, Bernard managed the company's workforce growth. In eight years, the company rose from 20 people to more than 500. In 1991, for its tenth anniversary, it had more than 800 people, and about 2500 customers (40% in automotive, 30% in aeronautics, 30% others). It had almost 8000 customers in 1993; subsidiaries were set up in the United States and Japan.
In 1988, Bernard created a subsidiary, Dassault Data Services (DDS), to enter the growing IT professional services market. The growing complexity of IT environments generated demand for tailored solutions and skills able to integrate diverse software packages. However, DDS business remained basically intertwined with Dassault Systèmes products, offering training, consultancy and specific development. Currently, 95% of DDS shares are owned by Dassault Systèmes.
Bernard initiated a product policy based on versions (major changes) and "releases" (updates and further functions), strongly influenced by IBM. Its realization in a young company like Dassault Systèmes was achieved because of a strong internal consensus, an entrepreneurial spirit focused on flexibility, and a confidence in the company’s technological advance. « …[The CATIA] major advance over CADAM was the 3rd dimension. In 1984 drafting capabilities were added to CATIA, enabling it to function independently of CADAM. By 1985 CATIA Version 2 contained fully integrated drafting, solid and robotics functions, making it the aeronautical applications leader. By 1988 CATIA Version 3 contained AEC functionality and was ported to IBM's UNIX-based RS/6000 workstations. CATIA thus became the automotive applications leader as well. »
In 1981, the decision to market CATIA led to the creation of Dassault Systèmes. This was a bold decision; at that time no other aircraft manufacturer would have made public its design tools (for 3D at least). Founding a software editor, Dassault Systèmes, ran the risk of CATIA technology spreading to competitors. There was a precedent in Lockheed's marketing of CADAM, but that was an exception and 2D knowledge was not a breakthrough technology. CATIA, by contrast, was not only a new software tool, it was a business transformation.
From the beginning, a partnership with IBM was key to Dassault Systèmes' success. IBM ensured the entire marketing of CATIA. Getting CATIA enter the IT leader’s catalogue demanded a huge effort. The qualification process, which began in 1980, took several months. Competition against other software options was fierce. But "IBM had identified CADAM's shortcomings and was looking for a product for its catalogue that would complement it, particularly in the field of three-dimensional representations. After a long and thorough analysis by IBM technicians assigned at Dassault in its CADCAM center in Saint-Cloud, CATI was selected against its competitors, respectively presented by Northrop, and by Nissan.”
In 1977, facing the integration problems inevitably created by constant needs of new applications, but also facing the rapid improvement of computer user-friendliness, Bernard conceived a complete rewriting of GEOVA. With the agreement of his management, Jean Cabrière and Pierre Bohn, he started designing a new architecture encompassing the whole set of functions as well as interactive graphical interfaces addressing non-computer specialists. This was the beginning of CATI (Computer-Aided Tridimensionnal Interactive application) that in a few years became CATIA (Computer-Aided Three-dimensional Interactive Application).
While 3D gave excellent results for wind tunnel models or surface optimization, 2D remained the key modeling practice in design offices where dozens of drawing boards were aligned in large open spaces. In the 1970s, the CAD offers available on the market were mainly aimed at draftsmen. In 1974, Dassault Aviation purchased licences for CADAM ('Computer Augmented Design And Manufacturing'), Lockheed's interactive drawing application, aimed at replacing drawing boards. Francis Bernard developed interfaces between GEOVA and CADAM as well as 2.5D improvements on CADAM. The latter aimed at modeling and machining wing ribs and fuselage frames on 5-axis CNC machines (incidentally, these functions were also later sold to CADAM Inc). DRAPO (Définition et Réalisation d’Avions par Ordinateur - computer-aided aircraft definition and realisation) was the acronym given to this integration of GEOVA 3D and CADAM 2.5D.
For a decade, from 1967 to 1977, he developed GEOVA, a comprehensive set of 3D CAD applications. GEOVA evolved to benefit from many computer technological innovations, such as interactive graphics terminals replacing alphanumeric terminals tools, and to interface with the computer numerical control (CNC) machines. As for the other aircraft manufacturers, these were internal developments defined according to very specific and urgent requirements. The level of integration tended to be low. This was the time of mainframes and punched cards, requiring a high level of software applications expertise. User friendliness was not feasible yet. Design offices had to submit calculation works to Bernard's team, which was responsible for both software development and operation.
Francis Bernard (born 1940) is a French engineer. In the 1970s, he initiated CAD/CAM developments at Dassault Aviation. They led to CATIA 3D, which was made available worldwide after he co-founded Dassault Systèmes in 1981.
Francis Bernard was born in Hanoi in 1940, still part of French Indochina, today Vietnam. His father was an engineer in the coalmines of northern Vietnam. He attended primary school in Haiphong and Dalat. In 1952, his family returned to France and settled in Paris. He joined the Janson-de-Sailly high school, following the course of preparatory classes before being accepted at Institut Supérieur de l'Aéronautique et de l'Espace (Supaero), a French university specialising in aerospace engineering, in 1965.