Age, Biography and Wiki
Jack Ridley (pilot) (Jack) was born on 16 June, 1915 in Garvin, Oklahoma, U.S., is an officer. Discover Jack Ridley (pilot)'s Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 42 years old?
Popular As |
Jack |
Occupation |
N/A |
Age |
42 years old |
Zodiac Sign |
Gemini |
Born |
16 June 1915 |
Birthday |
16 June |
Birthplace |
Garvin, Oklahoma, U.S. |
Date of death |
March 12, 1957 (aged 41) - northwest of Tokyo, Japan |
Died Place |
northwest of Tokyo, Japan |
Nationality |
United States |
We recommend you to check the complete list of Famous People born on 16 June.
He is a member of famous officer with the age 42 years old group.
Jack Ridley (pilot) Height, Weight & Measurements
At 42 years old, Jack Ridley (pilot) height not available right now. We will update Jack Ridley (pilot)'s Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.
Physical Status |
Height |
Not Available |
Weight |
Not Available |
Body Measurements |
Not Available |
Eye Color |
Not Available |
Hair Color |
Not Available |
Dating & Relationship status
He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.
Family |
Parents |
Not Available |
Wife |
Not Available |
Sibling |
Not Available |
Children |
Not Available |
Jack Ridley (pilot) Net Worth
His net worth has been growing significantly in 2022-2023. So, how much is Jack Ridley (pilot) worth at the age of 42 years old? Jack Ridley (pilot)’s income source is mostly from being a successful officer. He is from United States. We have estimated
Jack Ridley (pilot)'s net worth
, money, salary, income, and assets.
Net Worth in 2023 |
$1 Million - $5 Million |
Salary in 2023 |
Under Review |
Net Worth in 2022 |
Pending |
Salary in 2022 |
Under Review |
House |
Not Available |
Cars |
Not Available |
Source of Income |
officer |
Jack Ridley (pilot) Social Network
Instagram |
|
Linkedin |
|
Twitter |
|
Facebook |
|
Wikipedia |
|
Imdb |
|
Timeline
Ridley had to rise to meet unexpected problems and new aerodynamic principles. He faced the problem of a complete loss of elevator effectiveness which Yeager experienced during his eighth powered flight as his Mach meter indicated a speed of Mach 0.94 (his true airspeed was in the range of 0.96-0.99 Mach, just below the speed of sound). At that speed, the little research plane stopped responding to all elevator control inputs, leaving the pilot unable to change his pitch angle, or to raise or lower the plane's nose in flight. When speed decreased slightly, the problem abruptly disappeared. Analysis suggested that a shockwave was forming along the elevator's hinge line, leaving it ineffective. Ridley determined in that speed range, the elevator itself could safely be dispensed with and the X-1's entire horizontal stabilizer, which could be adjusted for trim changes, be used for pitch control. The idea worked, and Ridley's concept eventually came to be incorporated in all supersonic aircraft — the "flying tail."
In 1996, Ridley was inducted into the Aerospace Walk of Honor and was inducted into the National Aviation Hall of Fame in Dayton, Ohio, in 2004. He was survived by his wife, Nell, and son Jack Ridley, Jr. He is buried at Arlington National Cemetery.
Flying as co-pilot in a C-47 over Japan on March 12, 1957, Ridley died at age 41 when the transport crashed into a snow-covered Mt. Shirouma, northwest of Tokyo. In 1980, the Ridley Mission Control Center at Edwards Air Force Base was dedicated in Ridley's honor. In the 1983 film The Right Stuff, Ridley was portrayed, including beyond the time of his death, by Levon Helm. Scenes with the Bell X-1 occurred while Ridley was still alive. However, the scene in which Yeager crashes the Lockheed F-104 Starfighter in 1963 occurred after Ridley's death in the 1957 plane crash.
Ridley was promoted to full colonel in 1956 and became a member of the U.S. Military Assistance Advisory Group-Japan.
By this point in his career, his professional reputation had already spread far afield. Dr. Theodore von Kármán, Chairman of the Advisory Group for Aeronautical Research and Development (AGARD), nominated the young lieutenant colonel to represent the United States on its Flight Test Techniques Panel. This appointment was a signal honor. AGARD, a Standing Group of the North Atlantic Treaty Organization (NATO) had been created to bring together the leading aeronautical experts from each of the member nations to find ways to use aviation research and development personnel and facilities for the common benefit of the member nations. Ridley served in this prestigious position from 1952 until 1956.
Ridley worked on the X-1 project until May 1948, when he was sent to the state of Washington for temporary assignment to the XB-47 program. The swept-wing Stratojet, powered by six J-47 turbojet engines and capable of high subsonic speeds, was in its way as revolutionary as the X-1 had been. His expertise proved instrumental in bringing the revolutionary jet bomber to operational status with the Strategic Air Command. A year later, the flight test engineer was permanently assigned to Muroc Army Air Field (soon to be renamed Edwards Air Force Base) where he remained, with interruptions, until 1956.
Even as Ridley was attending the Flight Performance School, the revolutionary X-1 rocket research airplane was making its initial unpowered check flights and, within a year, the USAAF (soon to achieve independence as the United States Air Force) would assume control of the supersonic research program. Colonel Albert Boyd, the chief of the Flight Test Division selected the project team that would attempt the world's first supersonic flight. In the spring of 1947, Boyd appraised his roster of 125 test pilots and finally selected three volunteers who were considered very junior in terms of their flight test experience: Captain Charles E. "Chuck" Yeager, 1st Lieutenant Robert A. "Bob" Hoover, and Ridley. He named Yeager and Hoover as primary and backup pilot respectively, and Ridley as project engineer.
If Yeager was a superb "intuitive engineer," able to identify the cause of any unexpected event in the air, Ridley was equally gifted in his computational and reasoning abilities. Indeed, Yeager often called him "the brains behind the whole X-1 test program." All three team members meshed well together. All were pragmatic, hands-on types with an instinct to ferret out a straightforward, practical solution to each problem as soon as it arose. The result was an energetic team of young professionals who fulfilled Colonel Boyd's most exacting expectations and, on October 14, 1947, led the world into the supersonic age. The Air Force recognized his efforts three years later by awarding him the Commendation Ribbon for meritorious achievement.
Ridley was sent to Wright Field, Ohio, and assigned to the Air Materiel Command's Flight Test Division. Ridley went to the Air Materiel Command Flight Performance School from January through May 1946. In the spring of 1946, he graduated with Class 46A.
In 1944, Ridley was sent off to further his education. After attending the Army Air Forces School of Engineering at Wright Field (later renamed the Air Force Institute of Technology), Ridley was sent to the California Institute of Technology, in Pasadena, California where he received his Master of Science degree in aeronautical engineering in July 1945.
Colonel Jackie Lynwood Ridley (June 16, 1915 – March 12, 1957) was an aeronautical engineer, USAF test pilot and chief of the U.S. Air Force's Flight Test Engineering Laboratory. He helped develop and test many Cold War era military aircraft. He worked on the Bell X-1, the first aircraft to achieve supersonic flight. He was highly respected among fellow test pilots, most notably Chuck Yeager, for his engineering skills.
Jack Ridley was born on June 16, 1915, in Garvin, Oklahoma. Ridley graduated from a high school in Sulphur, Oklahoma in 1935. Following high school, he entered the ROTC program at the University of Oklahoma where he received his Bachelor of Science degree in mechanical engineering in 1939. In July 1941, the young engineer received a commission in the U.S. Army field artillery and began a military career, which would continue for the rest of his life. The science of flight soon attracted him, however, and it was not long before he transferred to the Army Air Forces. Lieutenant Ridley was sent to the Flying Training School at Kelly Army Air Base in Texas, where he earned his pilot wings in May 1942.