Age, Biography and Wiki
Mikhael Gromov (mathematician) was born on 23 December, 1943 in Boksitogorsk, Russian SFSR, Soviet Union. Discover Mikhael Gromov (mathematician)'s Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 80 years old?
Popular As |
N/A |
Occupation |
N/A |
Age |
80 years old |
Zodiac Sign |
Capricorn |
Born |
23 December 1943 |
Birthday |
23 December |
Birthplace |
Boksitogorsk, Russian SFSR, Soviet Union |
Nationality |
Togo |
We recommend you to check the complete list of Famous People born on 23 December.
He is a member of famous with the age 80 years old group.
Mikhael Gromov (mathematician) Height, Weight & Measurements
At 80 years old, Mikhael Gromov (mathematician) height not available right now. We will update Mikhael Gromov (mathematician)'s Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.
Physical Status |
Height |
Not Available |
Weight |
Not Available |
Body Measurements |
Not Available |
Eye Color |
Not Available |
Hair Color |
Not Available |
Dating & Relationship status
He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.
Family |
Parents |
Not Available |
Wife |
Not Available |
Sibling |
Not Available |
Children |
Not Available |
Mikhael Gromov (mathematician) Net Worth
His net worth has been growing significantly in 2022-2023. So, how much is Mikhael Gromov (mathematician) worth at the age of 80 years old? Mikhael Gromov (mathematician)’s income source is mostly from being a successful . He is from Togo. We have estimated
Mikhael Gromov (mathematician)'s net worth
, money, salary, income, and assets.
Net Worth in 2023 |
$1 Million - $5 Million |
Salary in 2023 |
Under Review |
Net Worth in 2022 |
Pending |
Salary in 2022 |
Under Review |
House |
Not Available |
Cars |
Not Available |
Source of Income |
|
Mikhael Gromov (mathematician) Social Network
Instagram |
|
Linkedin |
|
Twitter |
|
Facebook |
|
Wikipedia |
|
Imdb |
|
Timeline
Gromov has won several prizes, including the Abel Prize in 2009 "for his revolutionary contributions to geometry".
Another consequence is Gromov's compactness theorem, stating that the set of compact Riemannian manifolds with Ricci curvature ≥ c and diameter ≤ D is relatively compact in the Gromov–Hausdorff metric. The possible limit points of sequences of such manifolds are Alexandrov spaces of curvature ≥ c, a class of metric spaces studied in detail by Burago, Gromov and Perelman in 1992.
Gromov made foundational contributions to systolic geometry. Systolic geometry studies the relationship between size invariants (such as volume or diameter) of a manifold M and its topologically non-trivial submanifolds (such as non-contractible curves). In his 1983 paper "Filling Riemannian manifolds" Gromov proved that every essential manifold M {\displaystyle M} with a Riemannian metric contains a closed non-contractible geodesic of length at most C ( n ) Vol ( M ) 1 / n {\displaystyle C(n)\operatorname {Vol} (M)^{1/n}} .
In 1981 he left Stony Brook University to join the faculty of University of Paris VI and in 1982 he became a permanent professor at the Institut des Hautes Études Scientifiques (IHES) where he remains today. At the same time, he has held professorships at the University of Maryland, College Park from 1991 to 1996, and at the Courant Institute of Mathematical Sciences in New York since 1996. He adopted French citizenship in 1992.
In 1981, Gromov identified topological restrictions, based upon Betti numbers, on manifolds which admit Riemannian metrics of nonnegative sectional curvature. The principle idea of his work was to combine Karsten Grove and Katsuhiro Shiohama's Morse theory for the Riemannian distance function, with control of the distance function obtained from the Toponogov comparison theorem, together with the Bishop–Gromov inequality on volume of geodesic balls. This resulted in topologically controlled covers of the manifold by geodesic balls, to which spectral sequence arguments could be applied to control the topology of the underlying manifold. The topology of lower bounds on sectional curvature is still not fully understood, and Gromov's work remains as a primary result. As an application of Hodge theory, Peter Li and Yau were able to apply their gradient estimates to find similar Betti number estimates which are weaker than Gromov's but allow the manifold to have convex boundary.
In 1981, Gromov introduced the Gromov–Hausdorff metric, which endows the set of all metric spaces with the structure of a metric space. More generally, one can define the Gromov-Hausdorff distance between two metric spaces, relative to the choice of a point in each space. Although this does not give a metric on the space of all metric spaces, it is sufficient in order to define "Gromov-Hausdorff convergence" of a sequence of pointed metric spaces to a limit. Gromov formulated an important compactness theorem in this setting, giving a condition under which a sequence of pointed and "proper" metric spaces must have a subsequence which converges. This was later reformulated by Gromov and others into the more flexible notion of an ultralimit.
In 1979, Richard Schoen and Shing-Tung Yau showed that the class of smooth manifolds which admit Riemannian metrics of positive scalar curvature is topologically rich. In particular, they showed that this class is closed under the operation of connected sum and of surgery in codimension at least three. Their proof used elementary methods of partial differential equations, in particular to do with the Green's function. Gromov and Blaine Lawson gave another proof of Schoen and Yau's results, making use of elementary geometric constructions. They also showed how purely topological results such as Stephen Smale's h-cobordism theorem could then be applied to draw conclusions such as the fact that every closed and simply-connected smooth manifold of dimension 5, 6, or 7 has a Riemannian metric of positive scalar curvature. They further introduced the new class of enlargeable manifolds, distinguished by a condition in homotopy theory. They showed that Riemannian metrics of positive scalar curvature cannot exist on such manifolds. A particular consequence is that the torus cannot support any Riemannian metric of positive scalar curvature, which had been a major conjecture previously resolved by Schoen and Yau in low dimensions.
In 1978, Gromov introduced the notion of almost flat manifolds. The famous quarter-pinched sphere theorem in Riemannian geometry says that if a complete Riemannian manifold has sectional curvatures which are all sufficiently close to a given positive constant, then M must be finitely covered by a sphere. In contrast, it can be seen by scaling that every closed Riemannian manifold has Riemannian metrics whose sectional curvatures are arbitrarily close to zero. Gromov showed that if the scaling possibility is broken by only considering Riemannian manifolds of a fixed diameter, then a closed manifold admitting such a Riemannian metric, with sectional curvatures sufficiently close to zero, must be finitely covered by a nilmanifold. The proof works by replaying the proofs of the Bieberbach theorem and Margulis lemma. Gromov's proof was given a careful exposition by Peter Buser and Hermann Karcher.
Disagreeing with the Soviet system, he had been thinking of emigrating since the age of 14. In the early 1970s he ceased publication, hoping that this would help his application to move to Israel. He changed his last name to that of his mother. He received a coded letter saying that, if he could get out of the Soviet Union, he could go to Stony Brook, where a position had been arranged for him. When the request was granted in 1974, he moved directly to New York and worked at Stony Brook.
Gromov married in 1967. In 1970, he was invited to give a presentation at the International Congress of Mathematicians in Nice, France. However, he was not allowed to leave the USSR. Still, his lecture was published in the conference proceedings.
Gromov studied mathematics at Leningrad State University where he obtained a master's degree in 1965, a Doctorate in 1969 and defended his Postdoctoral Thesis in 1973. His thesis advisor was Vladimir Rokhlin.
Since the seminal 1964 publication of James Eells and Joseph Sampson on harmonic maps, various rigidity phenomena had been deduced from the combination of an existence theorem for harmonic mappings together with a vanishing theorem asserting that (certain) harmonic mappings must be totally geodesic or holomorphic. Gromov had the insight that the extension of this program to the setting of mappings into metric spaces would imply new results on discrete groups, following Margulis superrigidity. Richard Schoen carried out the analytical work to extend the harmonic map theory to the metric space setting; this was subsequently done more systematically by Nicholas Korevaar and Schoen, establishing extensions of most of the standard Sobolev space theory. A sample application of Gromov and Schoen's methods is the fact that lattices in the isometry group of the quaternionic hyperbolic space are arithmetic.
Gromov's compactness theorem had a deep impact on the field of geometric group theory. He applied it to understand the asymptotic geometry of the word metric of a group of polynomial growth, by taking the limit of well-chosen rescalings of the metric. By tracking the limits of isometries of the word metric, he was able to show that the limiting metric space has unexpected continuities, and in particular that its isometry group is a Lie group. As a consequence he was able to settle the Milnor-Wolf conjecture as posed in the 1960s, which asserts that any such group is virtually nilpotent. Using ultralimits, similar asymptotic structures can be studied for more general metric spaces. Important developments on this topic were given by Bruce Kleiner, Bernhard Leeb, and Pierre Pansu, among others.
Motivated by Nash and Kuiper's isometric embedding theorems and the results on immersions by Morris Hirsch and Stephen Smale, Gromov introduced the h-principle in various formulations. Modeled upon the special case of the Hirsch–Smale theory, he introduced and developed the general theory of microflexible sheaves, proving that they satisfy an h-principle on open manifolds. As a consequence (among other results) he was able to establish the existence of positively curved and negatively curved Riemannian metrics on any open manifold whatsoever. His result is in counterpoint to the well-known topological restrictions (such as the Cheeger–Gromoll soul theorem or Cartan–Hadamard theorem) on geodesically complete Riemannian manifolds of positive or negative curvature. After this initial work, he developed further h-principles partly in collaboration with Yakov Eliashberg, including work building upon Nash and Kuiper's theorem and the Nash–Moser implicit function theorem. There are many applications of his results, including topological conditions for the existence of exact Lagrangian immersions and similar objects in symplectic and contact geometry. His well-known book Partial Differential Relations collects most of his work on these problems. Later, he applied his methods to complex geometry, proving certain instances of the Oka principle on deformation of continuous maps to holomorphic maps. His work initiated a renewed study of the Oka–Grauert theory, which had been introduced in the 1950s.
Mikhael Leonidovich Gromov (also Mikhail Gromov, Michael Gromov or Misha Gromov; Russian: Михаи́л Леони́дович Гро́мов; born 23 December 1943) is a Russian-French mathematician known for his work in geometry, analysis and group theory. He is a permanent member of IHÉS in France and a professor of mathematics at New York University.
Mikhail Gromov was born on 23 December 1943 in Boksitogorsk, Soviet Union. His Russian father Leonid Gromov and his Jewish mother Lea Rabinovitz were pathologists. His mother was the cousin of World Chess Champion Mikhail Botvinnik, as well as of the mathematician Isaak Moiseevich Rabinovich. Gromov was born during World War II, and his mother, who worked as a medical doctor in the Soviet Army, had to leave the front line in order to give birth to him. When Gromov was nine years old, his mother gave him the book The Enjoyment of Mathematics by Hans Rademacher and Otto Toeplitz, a book that piqued his curiosity and had a great influence on him.