Age, Biography and Wiki

Paul Steinhardt is an American theoretical physicist and cosmologist. He is the Albert Einstein Professor in Science at Princeton University and the director of the Princeton Center for Theoretical Science. He is best known for his work on inflationary cosmology, the theory of cosmic inflation, and the development of the concept of quasicrystals. He received his B.A. in physics from Harvard University in 1974 and his Ph.D. in physics from the Massachusetts Institute of Technology in 1979. He was a postdoctoral fellow at the Institute for Advanced Study in Princeton from 1979 to 1981. He is the author of several books, including Endless Universe: Beyond the Big Bang (2007), The Second Kind of Impossible: The Extraordinary Quest for a New Form of Matter (2014), and The Perfect Theory: A Century of Geniuses and the Battle over General Relativity (2015). As of 2021, Paul Steinhardt's net worth is estimated to be $1 million.

Popular As Paul Joseph Steinhardt
Occupation N/A
Age 71 years old
Zodiac Sign Capricorn
Born 25 December 1952
Birthday 25 December
Birthplace Washington, D.C., US
Nationality United States

We recommend you to check the complete list of Famous People born on 25 December. He is a member of famous with the age 71 years old group.

Paul Steinhardt Height, Weight & Measurements

At 71 years old, Paul Steinhardt height not available right now. We will update Paul Steinhardt's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.

Family
Parents Not Available
Wife Not Available
Sibling Not Available
Children Not Available

Paul Steinhardt Net Worth

His net worth has been growing significantly in 2022-2023. So, how much is Paul Steinhardt worth at the age of 71 years old? Paul Steinhardt’s income source is mostly from being a successful . He is from United States. We have estimated Paul Steinhardt's net worth , money, salary, income, and assets.

Net Worth in 2023 $1 Million - $5 Million
Salary in 2023 Under Review
Net Worth in 2022 Pending
Salary in 2022 Under Review
House Not Available
Cars Not Available
Source of Income

Paul Steinhardt Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia Paul Steinhardt Wikipedia
Imdb

Timeline

2019

Other contributions to the field: Steinhardt and his collaborators have made significant contributions to understanding the quasicrystals’ unique mathematical and physical properties , including theories of how and why quasicrystals form and their elastic and hydrodynamics properties.

Phoamtonics: In 2019, Steinhardt, along with Michael Klatt and Torquato, introduced the idea of “phoamtonics,” which refers to photonic materials based on foam-like designs. They showed that large photonic bandgaps could arise in network structures created by converting the foam edges (intersections between foam bubbles) to a dielectric material for the two most famous crystalline foam structures, Kelvin foams and Weiare-Phelan foams.

2018

Incompatibility with the string-swampland conjectures: In 2018, Steinhardt, in collaboration with Prateek Agrawal, George Obieds, and Cumrun Vafa, argued that inflation may also be incompatible with string theory because inflationary models generally violate constraints (sometimes called the “swampland conjectures”) on what is required for a model to be consistent with quantum gravity.

Quintessence: Working with colleagues, he subsequently introduced the concept of quintessence, a form of dark energy that varies with time. It was first posited by Steinhardt's team as an alternative to the cosmological constant, which is (by definition) constant and static; quintessence is dynamic. Its energy density and pressure evolve over time. The 2018 paper on swampland conjectures with Agrawal, Obieds and Vafa points to quintessence as being the only option for dark energy in string theory and consistent quantum gravity.

2015

In 2015, the unlikeness problem was reaffirmed and strengthened by a subsequent round of measurements reported by the Planck satellite team.

2014

In 2014, Steinhardt, Spergel and Jason Pollack have proposed that a small fraction of dark matter could have ultra-strong self-interactions, which would cause the particles to coalesce rapidly and collapse into seeds for early supermassive black holes.

More natural quasicrystals: Further studies revealed other new minerals in the Chukotka samples. In 2014, one of those minerals was discovered to be a crystalline phase of aluminum, nickel and iron (Al38Ni33Fe30). It was accepted by the International Mineralogical Association and named "steinhardtite" in Steinhardt's honor In 2015, a second type of natural quasicrystal was discovered in a different grain of the same meteorite. The second known natural quasicrystal was found to be a different mixture of aluminum, nickel and iron (Al71Ni24Fe5) and had a decagonal symmetry (a regularly stacking of atomic layers which each have 10-fold symmetry). It was accepted by the Internaltional Mineralogical Association and given the name "decagonite."

2013

The unlikeliness problem: In 2013, Anna Ijjas, Abraham Loeb and Steinhardt added to the criticisms in a widely discussed pair of papers that the inflationary model was much less likely to explain our universe than previously thought.

According to their analysis of the Planck satellite 2013 results, the chances of obtaining a universe matching the observations after a period of inflation is less than one in a googolplex. Steinhardt and his team dubbed the result the “unlikeliness problem.” The two papers also showed that Planck satellite data ruled out what had been historically accepted as the simplest inflationary models and that the remaining inflationary models require more parameters, more fine-tuning of those parameters, and more unlikely initial conditions.

2012

Etaphase Inc.: The meta-material breakthroughs by Steinhardt and his Princeton colleagues have valuable commercial applications. In 2012, the scientists helped create a start-up company called Etaphase, which will apply their discoveries to a wide range of high performance products. The inventions will be used in integrated circuits, structural materials, photonics, communications, chip-to-chip communications, intra-chip communications, sensors, datacomm, networking, and solar applications.

2009

For the first eight years, the search yielded no results. In 2007, Italian scientist Luca Bindi, then curator of the mineral collection at the Universite’ di Firenze, joined the team. Two years later, Bindi identified a promising specimen in his museum's storage room. The tiny specimen, a few millimeters across, had been packed away in a box labeled "khatyrkite," which is an ordinary crystal composed of copper and aluminum. On January 2, 2009, Steinhardt and Nan Yao, director of the Princeton Imaging Center, examined the material and identified the signature diffraction pattern of an icosahedral quasicrystal. This was the first known natural quasicrystal.

HyperUniform Disordered Solids (HUDS): Working with Salvatore Torquato and Marian Florescu, in 2009 Steinhardt discovered a new class of photonic materials called hyperuniform disordered solids (HUDS), and showed that solids consisting of a hyperuniform disordered arrangement of dielectric elements produce band gaps with perfect spherical symmetry. These materials, which act as isotropic semiconductors for light, can be used to control and manipulate light in a wide range of applications including optical communications, photonic computers, energy harvesting, non-linear optics and improved light sources.

2007

He has written two popular books on these topics. Endless Universe: Beyond the Big Bang (2007), co-authored with Neil Turok, describes the early struggles in challenging the widely accepted big bang theory and the subsequent development of the bouncing or cyclic theories of the universe, which are currently being explored and tested. The Second Kind of Impossible: The Extraordinary Quest for a New Form of Matter (2019) recounts the story of quasicrystals from his invention of the concept with his then-student Dov Levine, to his expedition to far eastern Russia to recover meteorite fragments containing natural quasicrystal grains formed billions of years ago.

2005

Photonic quasicrystals: A team of researchers including Steinhardt, Paul Chaikin, Weining Man and Mischa Megens designed and tested the first photonic quasicrystal with icosahedral symmetry in 2005. They were the first to demonstrate the existence of photonic band gaps ("PBGs"). These materials block light for a finite range of frequencies (or colors) and let pass light with frequencies outside that band, similar to the way in which a semiconductor blocks electrons for a finite range of energies.

2002

Despite his criticisms of the idea, Steinhardt's major contributions to the inflationary theory were recognized in 2002 when he shared the Dirac Prize with Alan Guth of M.I.T. and Andrei Linde of Stanford.

The first model was based on the speculative notion suggested by string theory that the universe has extra-dimensions bounded by “branes” (where “brane” is derived from "membrane," a basic object in string theory). The bounce corresponded to the collision and rebound of these branes. The bounce (that is, brane collision) would be a violent event that would depend sensitively on quantum gravity effects that are not yet established. In 2002, Steinhardt and Turok then incorporated the ekpyrotic idea into a bolder proposal: an early version of a cyclic theory of the universe.

2001

Early models: The first examples of these bouncing and cyclic models, referred to as "ekpyrotic," were presented in papers in 2001 with Justin Khoury, Burt A. Ovrut and Neil Turok.

2000

Self-interacting dark matter: In 2000, David Spergel and Steinhardt first introduced the concept of strongly self-interacting dark matter (SIDM) to explain various anomalies in standard cold dark models based on assuming dark matter consists of weakly interacting massive particles (also referred to as "WIMPs")

1999

The first natural quasicrystal: In 1999, Steinhardt assembled a team at Princeton University to search for a natural quasicrystal. The team, composed of Peter Lu, Ken Deffeyes and Nan Yao, devised a novel mathematical algorithm to search through an international database of powder diffraction patterns.

1995

First evidence of cosmic acceleration: In 1995, Steinhardt and Jeremiah Ostriker used a concordance of cosmological observations to show there must be a non-zero dark energy component today, more than 65 percent of the total energy density, sufficient to cause the expansion of the universe to accelerate. This was verified three years later by supernova observations in 1998.

1993

Imprint of gravitational waves on the cosmic microwave background: In 1993, Robert Crittenden, Rick Davis, J.R. Bond, G. Efstathiou and Steinhardt performed the first calculations of the complete imprint of gravitational waves on the B-mode temperature maps and on the polarization of the microwave background radiation in 1993.

1987

In 1987, An-Pang Tsai and his group at Japan's Tohoku University made an important breakthrough with the synthesis of the first-ever stable icosahedral quasicrystal. It had sharp diffraction spots arranged in close accord with Steinhardt and Levine's quasicrystal theory and was inconsistent with any of the alternative explanations. The theoretical debate was effectively ended and the Steinhardt-Levine theory gained wide acceptance.

The International Mineralogical Association accepted the quasicrystal as a new mineral and designated its name, icosahedrite. The material had exactly the same atomic composition (Al63Cu24Fe13) as the first thermodynamically stable quasicrystal synthesized by An-Pang Tsai and his group in their laboratory in 1987.

1984

Steinhardt and Levine were shown a preprint of the Shechtman team's paper and immediately recognized that it could be experimental proof of their still-unpublished quasicrystal theory. The theory, along with the proposal that it could explain the mysterious, forbidden structure of the new alloy was published in December 1984.

1983

Hubble friction played a critical role in the 1983 paper by James Bardeen, Steinhardt and Michael S. Turner who were the first introduce a reliable, relativistically gauge invariant method to compute how quantum fluctuations during inflation might naturally generate a nearly scale-invariant spectrum of density fluctuations with a small tilt, properties later shown by observations of the cosmic microwave background to be features of our universe. The density fluctuations are seeds about which galaxies eventually form. Contemporaneous calculations by several other groups obtained similar conclusions using less rigorous methods.

Development of the theory: In 1983, Steinhardt and his then-student Dov Levine first introduced the theoretical concept of quasicrystals in a patent disclosure. The complete theory was published the following year in a paper entitled "Quasicrystals: A New Class of Ordered Structures." The theory proposed the existence of a new phase of solid matter analogous to Penrose tilings with rotational symmetries previously thought to be impossible for solids. Steinhardt and Levine named the new phase of matter a "quasicrystal." The never-before-seen atomic structure had quasiperiodic atomic ordering, rather than the periodic ordering characteristic of conventional crystals.

1982

Slow-roll inflation and Generation of the seeds for galaxies: In 1982, Steinhardt and Andreas Albrecht (and, independengly, Andrei Linde) constructed the first inflationary models that could speed up the expansion of the universe enough to explain the observed smoothness and flatness of the universe and then "gracefully exit" to the more modest expansion observed today. The Albrecht-Steinhardt paper was the first to note the effect of Hubble friction in sustaining inflation for a sufficiently long period (the “slow-roll” effect), setting the prototype for most subsequent inflationary models.

Eternal inflation and the multiverse: In 1982, Steinhardt presented the first example of eternal inflation. Neverending inflation was eventually shown to be a generic feature of inflationary models that leads to a multiverse, the break-up of space into an infinite multitude of patches spanning an infinite range of outcomes instead of the single smooth and flat universe, as originally hoped when first proposed.

The first synthetic quasicrystal: Working simultaneously to, but independently of, Steinhardt and Levine, Dan Shechtman, Ilan Blech, Denis Gratias and John Cahn at the National Bureau of Standards (NBS) were focused on an experimental discovery they could not explain. It was an unusual alloy of manganese and aluminum with a diffraction pattern of what appeared to be sharp (though not perfectly point-like) spots arranged with icosahedral symmetry that did not fit any known crystal structure. The alloy was first noted in 1982, but results were not published until November 1984 after more convincing data had been obtained.

1981

Working with David Nelson and Marco Ronchetti, Steinhardt formulated mathematical expressions, known as "orientational order parameters", for computing the degree of alignment of interatomic bonds in liquids and solids in 1981. Applying them to computer simulations of monatomic supercooled liquids, they showed that the atoms form arrangements with finite-range icosahedral (soccer-ball like) bond orientational order as liquids cool.

1980

Beginning in the early 1980s, Steinhardt co-authored seminal papers that helped to lay the foundations of inflationary cosmology.

1979

Expedition to Chukotka: Two years after identifying the museum sample, Steinhardt organized an international team of experts and led them on an expedition to its source, the remote Listventovyi stream in the Chukotka Autonomous Okrug in the northern half of the Kamchatka Peninsula in far eastern Russia. The team included Bindi and Valery Kryachko, the Russian ore geologist who had found the original samples of khatyrkite crystal while working at the Listventovyi stream in 1979.

1974

Steinhardt received his Bachelor of Science in Physics at Caltech in 1974, and his Ph.D. in Physics at Harvard University in 1978 where his advisor was Sidney Coleman. He was a Junior Fellow in the Harvard Society of Fellows from 1978–81; rose from junior faculty to Mary Amanda Wood Professor the University of Pennsylvania between 1981 and 1998, during which he maintained a long-term association with the Thomas J. Watson Research Center; and has been on the faculty at Princeton University since the Fall of 1998. He co-founded the Princeton Center for Theoretical Science and served as its Director from 2007 to 2019.

1973

He constructed the first computer generated continuous random network (CRN) model of glass and amorphous silicon in 1973, while still an undergraduate at Caltech. CRNs remain the leading model of amorphous silicon and other semiconductors today. Working with Richard Alben and D. Weaire, he used the computer model to predict structural and electronic properties.

1952

Paul Joseph Steinhardt (born December 25, 1952) is an American theoretical physicist whose principal research is in cosmology and condensed matter physics. He is currently the Albert Einstein Professor in Science at Princeton University where he is on the faculty of both the Departments of Physics and of Astrophysical Sciences.

1920

In the cyclic version of these models, space never crunches; rather, it necessarily grows overall from bounce to bounce every 100 billion years or so. After each bounce, gravitational energy is converted into the matter and radiation that fuels the next cycle. To an observer, the evolution appears to be cyclic because the temperature, density, number of stars and galaxies, etc., are on average the same from one cyclic to the next and the observer cannot see far enough to know that there is more space. The fact that the universe expands overall from cycle to cycle means that the entropy produced in earlier cycles (by the formation of stars and other entropy-producing processes) is increasingly diluted as the cycles proceed and so does not have any physical effect on cosmic evolution. This growth from cycle to cycle and associated entropy dilution are features that distinguish these new cyclic models from versions discussed in the 1920s by Friedmann and Tolman, and explain how the new cyclic model avoids the “entropy problem” that beset the earlier versions.