Age, Biography and Wiki

Paul Wild (Australian scientist) was born on 17 May, 1923 in Sheffield, England. Discover Paul Wild (Australian scientist)'s Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 85 years old?

Popular As N/A
Occupation N/A
Age 85 years old
Zodiac Sign Taurus
Born 17 May 1923
Birthday 17 May
Birthplace Sheffield, England
Date of death (2008-05-10) Canberra, Australia
Died Place Canberra, Australia
Nationality Australia

We recommend you to check the complete list of Famous People born on 17 May. He is a member of famous with the age 85 years old group.

Paul Wild (Australian scientist) Height, Weight & Measurements

At 85 years old, Paul Wild (Australian scientist) height not available right now. We will update Paul Wild (Australian scientist)'s Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.

Family
Parents Not Available
Wife Not Available
Sibling Not Available
Children Not Available

Paul Wild (Australian scientist) Net Worth

His net worth has been growing significantly in 2022-2023. So, how much is Paul Wild (Australian scientist) worth at the age of 85 years old? Paul Wild (Australian scientist)’s income source is mostly from being a successful . He is from Australia. We have estimated Paul Wild (Australian scientist)'s net worth , money, salary, income, and assets.

Net Worth in 2023 $1 Million - $5 Million
Salary in 2023 Under Review
Net Worth in 2022 Pending
Salary in 2022 Under Review
House Not Available
Cars Not Available
Source of Income

Paul Wild (Australian scientist) Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia
Imdb

Timeline

2019

After meeting with Morris later in September, Wild opined that "in many areas Australia needed desperately to dig itself out of the stagnation of 19th century thought." He believed the reaction highlighted Australia's general malaise; he deplored the emphasis on the short term and the preference for patching up decaying and unprofitable systems, ignoring imaginative plans for the future. He called for a much larger, objective investigation by independent experts, including those from overseas countries which already had fast trains. In doing so he emphasised that he was not seeking government funding for the scheme – merely support for a $500,000 study that would last 12 months. He would later reflect that he had got into some trouble "saying that this knock-back was characteristic of the malaise which the country is suffering, which got into a headline."

2008

Paul Wild died of natural causes in Canberra on 10 May 2008.

1995

The project faced other problems. Internally, the views of the members of the joint venture were not always in alignment. As many people in business in Australia know, a joint venture is a less robust form of business enterprise than a company. Certainly there were many strains within the VFT Joint Venture, and they increased as the feasibility study progressed. Wild, referring in 1995 to when the project expanded under the joint venture said, "We then got in some professional management and I think things started to slide from then on". His role as Chairman of the joint venture was not easy.

That is not surprising. In a 1995 interview Wild nominated his most significant achievement to be the building of the Culgoora radio-heliograph and providing the world with a unique eye to view and record moving pictures of rapidly changing solar activity. He observed:

1992

Wild developed a strong love of mathematics from a very early age. After matriculating he spent three years in the mathematical sixth form, most of the time on mathematics, with a little physics and world affairs. In free periods he and his friends would play bridge, under the chestnut trees in summertime. In an interview in 1992 he said: "We had three specialist mathematics teachers covering analysis, calculus and modern geometry, and I think I owe a lot to them."

This role, especially, invoked a sense of duty that had its roots during and before Wild's naval service. When asked in 1992 whether his appointment as Chairman rested "to an extent on the fact that you had put the division, and Australia, on the international map and you had this capacity for applying very fundamental work?", he responded, "Yes, I think it certainly must have done. I don't know that I really wanted the job, but it was a duty to take the job when they offered it to you." Wild recognised that CSIRO needed to adapt and provide scientific and technological leadership in a changing world, reflecting his maxim that "without excellence and originality, research achieves nothing." During this period of great change he secured funding for major national research facilities, including the oceanographic research vessel, RV Franklin; the Australian Animal Health Laboratory and the Australia Telescope; and he established a new Division of Information Technology.

1991

In August 1991 the federal government gave its final, negative answer and the joint venture ceased work on the project. Ironically, the federal government soon introduced infrastructure bonds to assist major projects facing the same financial hurdles as the VFT. However, Australian governments have continued to struggle to find acceptable mechanisms for public–private partnerships undertaking infrastructure projects.

In 1991 Wild's wife of 43 years, Elaine, died. Soon after the VFT project ended, he went for a holiday in the US and took with him the address of an old colleague in radiophysics – only to find that he had recently died. A few months later he proposed to his colleague's widow, Margaret Lyndon, and they had 12 happy years together before she died. During this time they alternated between Ann Arbor and Canberra.

1990

Interscan proved to have many advantages over other precision landing systems. It allows a wide selection of channels to avoid interference with other nearby airports; has excellent performance in all weather; and gives freedom to locate antennae anywhere at an airport. Some installations became operational in the 1990s and more were set up subsequently in Europe. NASA has operated a similar system to land Space Shuttles. However, Interscan has not become widely deployed worldwide, largely because the US Federal Aviation Administration has developed the Wide Area Augmentation System (WAAS), which augments the satellite-based Global Positioning System (GPS). Although WAAS is cheaper and conforms to ILS Category I, its accuracy is under 1.0 metre laterally and under 1.5 metres vertically, which is a particular concern at locations that frequently suffer from low visibility.

In July 1990 the VFT joint venture announced comparative studies of market demand and capital costs on the coastal and the inland routes. In October 1990, Wild announced that the inland route was the preferred choice for the VFT. The decision not to proceed with the original route to the east of the Snowy Mountains and through Gippsland was a difficult one for the VFT Joint Venture and for Wild personally. The decision was based purely on the capital costs and predicted financial performance of the two routes: there was no interest from any government in the developmental benefits which the coastal route would have brought to the south-eastern area of Australia.

Externally, there was the continuing issue of dealing with four governments, i.e. the federal government; the state governments of New South Wales and Victoria; and following the recent granting of self-government to the national capital, the Australian Capital Territory government. They had differing agendas and a tendency to look for problems associated with the project rather than the opportunities it offered. This attitude led to the eventual insurmountable hurdle which the project faced, when the issue arose of the tax treatment which would be necessary for the project to proceed. The VFT team worked hard in 1990 and 1991 to devise an acceptable approach. Despite the economic benefits which had been identified in a third-party analysis the federal government was not prepared to move in the area of tax.

1988

The Culgoora site later became the home for the Paul Wild Observatory, opened in 1988 and now a site for several major astronomical facilities.

In July–August 1988 a $1 million passenger market analysis was completed and a feasibility study was started, for which the joint venture partners budgeted $19 million. In December, a VFT Concept Report was released, identifying the key issues for a high-speed rail system, to be built and operated by private enterprise, with trains operating between Sydney, Canberra and Melbourne at speeds up to 350 km/h (220 mph). The report sought positive responses from the New South Wales, Victorian and federal governments and the Australian Capital Territory administration in facilitating access to land for survey and route investigation; ensuring cooperation by government agencies; and forms of support, including enactment of legislation to facilitate land acquisition.

1987

In June 1987 the joint venture's pre-feasibility study was completed. It postulated that the project was technically feasible and financially viable. It envisaged a purpose-built high-speed line from Sydney to Canberra via Bowral and Goulburn, and either a coastal route from Canberra to Melbourne via Cooma, East Gippsland and the La Trobe Valley – or an inland route via Wagga Wagga, Albury-Wodonga, Wangaratta and Seymour. Later, routes to Brisbane and Adelaide were conceptualised.

1985

The diplomacy and political strategy that Wild had first used to major advantage in negotiations with the International Civil Aviation Organization, combined with his intellectual rigour and a deeply ingrained focus on doing what was right, served CSIRO and Australia well until he retired from CSIRO, aged 62, in 1985.

Wild retired from CSIRO in October 1985, but CSIRO continued to support pre-feasibility studies until October 1988. By September 1986 he had brought together an unincorporated joint venture of TNT, Elders IXL and Kumagai Gumi. In August 1987, after delay caused by uncertainties surrounding a potential takeover of their company, the BHP joined as the fourth, and subsequently foremost, partner. Wild became chairman of the Very Fast Train Joint Venture.

1984

In April 1984, he and several CSIRO senior staff members, and a senior engineering manager from BHP, met to discuss a concept paper. On the day before Good Friday, they agreed on the components and who would write them. They all had commitments and agreed it would take six weeks to put a draft together. However, such was their private enthusiasm that each of them worked right through the four-day break, virtually finishing their drafts. In July 1984 the completed work was published as A Proposal for a Fast Railway between Sydney, Canberra and Melbourne. It turned the high-speed train from a broad concept to a tangible proposal, remarkably predicting the main issues that would be involved in the development of an Australian high-speed railway.

On 12 September 1984, during Parliament, Morris would describe the proposal as grandiose, likening it to another proposal to build a canal through the centre of Australia. He said that he would not "recommend to the Government that resources should be allocated to even do a study on it", and that "if, as has been suggested by its proponents [...] the private sector is interested in it, I would say to Dr Wild that he should take the proposal back to the private sector [...] and let them put it forward and fund it."

1983

In October 1983, Wild made a trip from Canberra to a CSIRO meeting in Sydney using the XPT, which was introduced the year prior. He would remark that:

1978

In 1978, Interscan was accepted as the new global standard in microwave landing systems – but only after many international political hurdles had been overcome. The project involved long, delicate negotiations with the International Civil Aviation Organization and pragmatic alliances with other nations. It was during the ICAO negotiations, and as chief of his CSIRO division, that Wild was revealed as a highly talented diplomat and political strategist. Dennis Cooper, a key participant in the ICAO negotiations, described Wild as "an excellent mentor, happy to listen to the ideas of young colleagues, able to grasp complex ideas and explain them simply".

In 1978, Wild became Chairman of CSIRO, a position he held until 1985, and for part of that tenure was also its Chief Executive. He took on the role after the first Independent Inquiry into CSIRO (the Birch Report of 1977) pointed the organisation towards "filling a gap in national research with strategic mission-oriented work." He led the organisation through the restructure to modernise it and bring it closer to the industries and community that it serves.

1972

In 1972 Paul Wild invented Interscan, a standard microwave landing system. From 1978 to 1985 he was chairman of the CSIRO, during which time he expanded the organisation's scope and directed its restructuring. He retired from the CSIRO to lead (from 1986) the Very Fast Train Joint Venture, a private sector project that sought to build a high-speed railway between Australia's two most populous cities. Lack of support from government brought it to an end in 1991. In his later years he worked on gravitational theory.

1971

In 1971, Paul Wild took over from E.G. 'Taffy' Bowen as chief of CSIRO's Division of Radiophysics. For someone who joined a particular research team so that he could "do his own thing", it may be surprising that he agreed to be appointed to this role. He explained his motivation:

1967

Wild's team then built and from 1967 operated a three-kilometre diameter radio-heliograph at Culgoora, near Narrabri in northern New South Wales. It was to become a ground-breaking instrument producing real-time images of solar activity across a range of altitudes from the Sun's surface. In the late 1960s and early 1970s the team led the world in solar research, attracting prominent solar physicists from around the world.

With Pawsey's help, £630,000 was raised from the Ford Foundation to build the Culgoora radio-heliograph. Years later he was to admit "When I think back I wonder how I had the nerve to do it." The heliograph stayed in operation for 17 years from 1967, providing a huge amount of data and insight into the way the solar corona works and the relationship between solar and terrestrial phenomena. Wild published more than 70 papers in this field. The heliograph also played a leading supporting role in both the Skylab missions of 1973–74 and the solar maximum mission of 1980–81, providing real-time observations of coronal activity. It was de-commissioned in 1984 to make way for the Australia Telescope and transferred to the Ionospheric Prediction Service, where it is still used today for space weather monitoring of solar activity. Now there are at least 20 ground-based radio-spectrographs operating around the world.

1962

Wild was always keen to pass on his enthusiasm for science. With George Gamow and instigator Harry Messel, he was a member of the inaugural trio who, from 1962, brought high-level science teaching to senior secondary students throughout Australia. Titled Summer School of Science, the sessions were televised live at the University of Sydney and re-broadcast in three-hour programs early every Sunday morning – a fore-runner of the programs of today's Professor Harry Messel International Science School.

1950

The spectrograph – the first ever built – looked at the spectrum of bursts of radiations from the Sun over a wide spectral range for frequencies from 40 to 70 megahertz. It produced some spectacular results, demonstrating the great complexity of burst and storm phenomena. At Penrith, 50 kilometres west of Sydney in the foothills of the Blue Mountains, a fairly primitive wooden aerial was pulled around with ropes, and every twenty minutes it was changed so that it pointed towards the Sun. The data were analysed after four months of observations. In the first paper, published in 1950, he wrote: "We have identified three distinct spectral types of burst and … we shall call them Type I, Type II and Type III."

Wild's team now needed a site for a new, better engineered and more powerful radiospectrograph and a large swept-frequency interferometer with which to observe the radio source. In September 1950, he and three colleagues borrowed a decrepit ex-military ambulance and with a spectrum analyser assessed potential sites on the outskirts of Sydney and down the New South Wales south coast that would be least affected by interference from radio transmissions. They chose a grazing property outside Dapto, 15 kilometres south of Wollongong, shielded by a 1500-foot mountain. Here the Radiophysics Solar Group went from strength to strength, to the extent that Wild later said "there was no question that we were the world champions". Professor Marcel Minnaert, the eminent Belgian astronomer, wrote in 1963:

1949

In the 15 years from 1949, the solar group that Wild had joined and which he soon came to lead achieved an international reputation in solar radiophysics. Their instruments revealed for the first time the presence of charged particles and shock waves travelling through the solar corona, and their potential effects on "space weather". The group's innovative design of observation equipment and ground-breaking investigations into the nature of solar radio bursts and the disturbances that gave rise to them cleared the way to classifying most types of bursts by their spectral appearance and presenting models to interpret their characteristics.

1948

From London, Wild had obtained an assistant research officer job with the Council for Scientific and Industrial Research at the Radiophysics Laboratory near Sydney. He described the position as "a humble one": to maintain and develop test equipment. But within a year he had, as he put it, "wheedled his way" into the new science of radio astronomy, and he described 1948–50 as

The new breed of electronic astronomers that Paul Wild joined were applying their wartime skills to radiophysics research, the Radiophysics Laboratory having achieved a number of successes since it was established, early in the war, to bring radar to Australia. In 1948, groups at the laboratory were studying several fields in addition to solar. Wild's work arose from the phenomenon of embryonic radar technology sometimes being jammed by mysterious interference, later discovered, in England, to be radio noise coming from the Sun.

1947

On returning to England, Wild taught radar to permanent naval officers until early 1947. During one of his wartime breaks in Australia he had become engaged to a young Sydney woman, Elaine Hull, whose family had offered hospitality; and on leaving the Royal Navy he immediately sailed for Sydney. He had asked his fiancée to go to England to be married, but she told him he would have to settle in Australia. As his future brother-in-law later observed, "Australia has my sister to thank for giving this country one of its greatest scientists".

1943

Paul Wild became one of the young radar officers who ensured the Royal Navy used its new technology to maximum effect. In July 1943, commissioned as a Probationary Temporary Acting Sub-lieutenant (Special Branch, Royal Navy Volunteer Reserve), he started an intensive, six-month radar officer training course at the Royal Navy base, Portsmouth. His seagoing appointment for the following two and a half years, with 60 subordinates and 24 radar sets, was the battleship HMS King George V, which eventually became flagship of the British Pacific Fleet. The ship took part in the Okinawa campaign, followed by the assault on the Japanese mainland. In both campaigns the fleet was frequently attacked by Japanese suicide bombers, but because they tended to concentrate on aircraft carriers, his ship was not hit. The battleship entered Tokyo Bay just after the surrender of Japan and he was present when the peace treaty was signed.

1942

World War II determined Paul Wild's specialisation and intruded to foreshorten his entire university life to only five terms. In 1942, Wild went to the University of Cambridge (Peterhouse) to further his mathematics. However, after a year of mathematics he knew that he would only be able to stay on if he did something relevant to the national war effort. Thus he went straight into "physics with radio": Part 2 Physics. He said

1940

Whitgift School is near what was then Croydon Aerodrome. In the summer of 1940, real excitement was added to the lives of the bridge-playing mathematics students: the Battle of Britain was going on overhead. "There was no sense of danger, it was all marvellous fun. Croydon [a Spitfire and Hurricane base] was right in the thick of it, and we used to watch the air battles going on."

1923

Dr John Paul Wild AC CBE MA ScD (Cantab.) FRS FTSE FAA (17 May 1923 – 10 May 2008) was a British-born Australian scientist. Following service in World War II as a radar officer in the Royal Navy, he became a radio astronomer in Australia for the Council for Scientific and Industrial Research, the fore-runner of the Commonwealth Scientific and Industrial Research Organisation (CSIRO). In the 1950s and 1960s he made discoveries based on radio observations of the Sun. In the late 1960s and early 1970s his team built and operated the world's first solar radio-spectrographs and subsequently the Culgoora radio-heliograph, near Narrabri, New South Wales. The Paul Wild Observatory at Culgoora is named after him.

John Paul Wild was born in Sheffield, England on 17 May 1923, the fourth son of wealthy cutlery manufacturer, Alwyn Wild, and his wife Bessie. But in that year, Alwyn's business collapsed and he went to the United States of America to sell his patents and technology for cutlery manufacture. In the event, he never returned. Bessie moved with her boys to Croydon, near London. About this Wild said "We went from riches to rags and the family was absolutely struggling" and "... right on the breadline, very, very poor." It was to be five or six years before a divorce settlement allowed the family to "live a reasonable middle-class life, reasonably well off".