Age, Biography and Wiki

Peyton Young was born on 9 March, 1945. Discover Peyton Young's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 78 years old?

Popular As N/A
Occupation N/A
Age 79 years old
Zodiac Sign Pisces
Born 9 March 1945
Birthday 9 March
Birthplace N/A
Nationality

We recommend you to check the complete list of Famous People born on 9 March. He is a member of famous with the age 79 years old group.

Peyton Young Height, Weight & Measurements

At 79 years old, Peyton Young height not available right now. We will update Peyton Young's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.

Family
Parents Not Available
Wife Not Available
Sibling Not Available
Children Not Available

Peyton Young Net Worth

His net worth has been growing significantly in 2022-2023. So, how much is Peyton Young worth at the age of 79 years old? Peyton Young’s income source is mostly from being a successful . He is from . We have estimated Peyton Young's net worth , money, salary, income, and assets.

Net Worth in 2023 $1 Million - $5 Million
Salary in 2023 Under Review
Net Worth in 2022 Pending
Salary in 2022 Under Review
House Not Available
Cars Not Available
Source of Income

Peyton Young Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia
Imdb

Timeline

2016

In an influential book, Individual Strategy and Social Structure, Young provides a clear and compact exposition of the major results in the field of stochastic evolutionary game theory, which he pioneered. He introduces his model of social interactions called 'adaptive play.' Agents are randomly selected from a large population to play a fixed game. They choose a myopic best response, based upon a random sample of past plays of the game. The evolution of the (bounded) history of play is described by a finite Markov chain. Idiosyncratic behavior or mistakes constantly perturb the process, so that every state is accessible from every other. This means that the Markov chain is ergodic, so there is a unique stationary distribution which characterizes the long-run behavior of the process. Recent work by Young and coauthors finds that evolutionary dynamics of this and other kinds can transit rapidly to stochastically stable equilibria from locally stable ones, when perturbations are small but nonvanishing (Arieli and Young 2016, Kreindler and Young 2013, Kreindler and Young 2014).

2015

In a series of papers, Young has applied the techniques of stochastic evolutionary game theory to the study of social norms (see Young 2015 for a review). The theory identifies four key features of norm dynamics.

2009

In an influential 2009 paper, Young turned attention to the diffusion dynamics that can result from different adoption rules in a well-mixed population. In particular, he distinguished between three different classes of diffusion model:

2004

The recent literature on learning in games is elegantly reviewed in Young's 2004 book, Strategic Learning and its Limits.

2003

Young has also made significant applied contributions to understanding the diffusion of new ideas, technologies and practices in a population. The spread of particular social norms can be analyzed within the same framework. In the course of several papers (Young 2003, Young 2011, Kreindler and Young 2014), Young has showed how the topology of a social network affects the rate and nature of diffusion under particular adoption rules at the individual level.

2001

Whereas evolutionary game theory studies the behavior of large populations of agents, the theory of learning in games focuses on whether the actions of a small group of players end up conforming to some notion of equilibrium. This is a challenging problem, because social systems are self-referential: the act of learning changes the thing to be learned. There is a complex feedback between a player's beliefs, their actions and the actions of others, which makes the data-generating process exceedingly non-stationary. Young has made numerous contributions to this literature. Foster and Young (2001) demonstrate the failure of Bayesian learning rules to learn mixed equilibria in games of uncertain information. Foster and Young (2003) introduce a learning procedure in which players form hypotheses about their opponents' strategies, which they occasionally test against their opponents' past play. By backing off from rationality in this way, Foster and Young show that there are natural and robust learning procedures that lead to Nash equilibrium in general normal form games.

These predictions are borne out in empirical work. Several regularities were uncovered in Young and Burke's (2001) study of cropsharing contracts in Illinois, which made use of detailed information on the terms of contracts on several thousand farms from different parts of the state. Firstly, there was considerable compression in the contract terms: 98% of all contracts involved 1/2-1/2, 2/5-3/5 or 1/3-2/3 splits. Secondly, when splitting the sample into farms from Northern and Southern Illinois, Young and Burke discovered a high degree of uniformity in contracts within each region, but significant variance across regions---evidence of the local conformity/global diversity effect. In Northern Illinois, the customary share was 1/2-1/2. In Southern Illinois, it was 1/3-2/3 or 2/5-3/5.

1995

Peyton Young was named a fellow of the Econometric Society in 1995, a fellow of the British Academy in 2007, and a fellow of the American Academy of Arts and Sciences in 2018. He served as president of the Game Theory Society from 2006–08. He has published widely on learning in games, the evolution of social norms and institutions, cooperative game theory, bargaining and negotiation, taxation and cost allocation, political representation, voting procedures, and distributive justice.

1985

Young (1985) has contributed an axiomatization of the Shapley value. It is regarded as a key piece for understanding the relationship between the marginality principle and the Shapley value. Young shows that the Shapley value is the only symmetric and efficient solution concept that is solely computed from a player's marginal contributions in a cooperative game. Consequently, the Shapley value is the only efficient and symmetric solution that satisfies monotonicity which requires that whenever a player's contribution to all coalitions weakly increases, then this player's allocation should also weakly increase. This justifies the Shapley value as the measure of a player's productivity in a cooperative game and makes it particularly appealing for cost allocation models.

1984

Conventional concepts of dynamic stability, including the evolutionarily stable strategy concept, identify states from which small once-off deviations are self-correcting. These stability concepts are not appropriate for analyzing social and economic systems which are constantly perturbed by idiosyncratic behavior and mistakes, and individual and aggregate shocks to payoffs. Building upon Freidlin and Wentzell's (1984) theory of large deviations for continuous time-processes, Dean Foster and Peyton Young (1990) developed the more powerful concept of stochastic stability: "The stochastically stable set [SSS] is the set of states such that, in the long run, it is nearly certain that the system lies within every open set containing S as the noise tends slowly to zero" [p. 221]. This solution concept created a major impact in economics and game theory after Young (1993) developed a more tractable version of the theory for general finite-state Markov chains. A state is stochastically stable if it attracts positive weight in the stationary distribution of the Markov chain. Young develops powerful graph-theoretic tools for identifying the stochastically stable states.

1971

His first academic post was at the graduate school of the City University of New York as assistant professor and then associate professor, from 1971 to 1976. From 1976 to 1982, Young was research scholar and deputy chairman of the Systems and Decision Sciences Division at the Institute for Applied Systems Analysis, Austria. He was then appointed professor of Economics and Public Policy in the School of Public Affairs at the University of Maryland, College Park from 1992 to 1994. Young was Scott & Barbara Black Professor of Economics at the Johns Hopkins University from 1994, until moving to Oxford as James Meade Professor of Economics in 2007. In 2004 he was a Fulbright Distinguished Chair at the University of Siena. He has been centennial professor at the London School of Economics since 2015 and remains a professorial fellow of Nuffield College, Oxford.

The theory is used to show that in 2x2 coordination games, the risk-dominant equilibrium will be played virtually all the time, as time goes to infinity. It also yields a formal proof of Thomas Schelling's (1971) result that residential segregation emerges at the social level even if no individual prefers to be segregated. In addition, the theory "demonstrates how high-rationality solution concepts in game theory can emerge in a world populated by low-rationality agents" [p. 144]. In bargaining games, Young demonstrates that the Nash (1950) and Kalai-Smorodinsky (1975) bargaining solutions emerge from the decentralized actions of boundedly rational agents without common knowledge.

1966

In 1966, he graduated cum laude in general studies from Harvard University. He completed a PhD in Mathematics at the University of Michigan in 1970, where he graduated with the Sumner B. Myers thesis prize for his work in combinatorial mathematics.

1959

The Kemeny–Young method was developed by John Kemeny in 1959. Young and Levenglick (1978) showed that this method was the unique neutral method satisfying reinforcement and the Condorcet criterion. In other papers (Young 1986, 1988, 1995, 1997), Young adopted an epistemic approach to preference-aggregation: he supposed that there was an objectively 'correct', but unknown preference order over the alternatives, and voters receive noisy signals of this true preference order (cf. Condorcet's jury theorem). Using a simple probabilistic model for these noisy signals, Young showed that the Kemeny–Young method was the maximum likelihood estimator of the true preference order. Young further argues that Marquis de Condorcet himself was aware of the Kemeny-Young rule and its maximum-likelihood interpretation, but was unable to clearly express his ideas.

1945

Hobart Peyton Young (born March 9, 1945) is an American game theorist and economist known for his contributions to evolutionary game theory and its application to the study of institutional and technological change, as well as the theory of learning in games. He is currently centennial professor at the London School of Economics, James Meade Professor of Economics Emeritus at the University of Oxford, professorial fellow at Nuffield College Oxford, and research principal at the Office of Financial Research at the U.S. Department of the Treasury.