Age, Biography and Wiki

R. Tyrrell Rockafellar was born on 10 February, 1935 in Milwaukee, Wisconsin, U.S.. Discover R. Tyrrell Rockafellar's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 88 years old?

Popular As N/A
Occupation N/A
Age 89 years old
Zodiac Sign Aquarius
Born 10 February 1935
Birthday 10 February
Birthplace Milwaukee, Wisconsin, U.S.
Nationality United States

We recommend you to check the complete list of Famous People born on 10 February. He is a member of famous with the age 89 years old group.

R. Tyrrell Rockafellar Height, Weight & Measurements

At 89 years old, R. Tyrrell Rockafellar height not available right now. We will update R. Tyrrell Rockafellar's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.

Family
Parents Not Available
Wife Not Available
Sibling Not Available
Children Not Available

R. Tyrrell Rockafellar Net Worth

His net worth has been growing significantly in 2022-2023. So, how much is R. Tyrrell Rockafellar worth at the age of 89 years old? R. Tyrrell Rockafellar’s income source is mostly from being a successful . He is from United States. We have estimated R. Tyrrell Rockafellar's net worth , money, salary, income, and assets.

Net Worth in 2023 $1 Million - $5 Million
Salary in 2023 Under Review
Net Worth in 2022 Pending
Salary in 2022 Under Review
House Not Available
Cars Not Available
Source of Income

R. Tyrrell Rockafellar Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia
Imdb

Timeline

1998

Rockafellar’s research is motivated by the goal of organizing mathematical ideas and concepts into robust frameworks that yield new insights and relations. This approach is most salient in his seminal book "Variational Analysis" (1998, with Roger J-B Wets), where numerous threads developed in the areas of convex analysis, nonlinear analysis, calculus of variation, mathematical optimization, equilibrium theory, and control systems were brought together to produce a unified approach to variational problems in finite dimensions. These various fields of study are now referred to as variational analysis. In particular, the text dispenses of differentiability as a necessary property in many areas of analysis and embraces nonsmoothness, set-valuedness, and extended real-valuedness, while still developing far-reaching calculus rules.

1990

Since the late 1990s, Rockafellar has been actively involved with organizing and expanding the mathematical concepts for risk assessment and decision making in financial engineering and reliability engineering. This includes examining the mathematical properties of risk measures and coining the terms "conditional value-at-risk," in 2000 as well as "superquantile" and "buffered failure probability" in 2010, which either coincide with or are closely related to expected shortfall.

1982

Rockafellar received the Dantzig Prize from the Society for Industrial and Applied Mathematics (SIAM) and the Mathematical Optimization Society in 1982, delivered the 1992 John von Neumann Lecture, received with Roger J-B Wets the Frederick W. Lanchester Prize from the Institute for Operations Research and the Management Sciences (INFORMS) in 1998 for the book “Variational Analysis.” In 1999, he was awarded the John von Neumann Theory Prize from INFORMS. He was elected to the 2002 class of Fellows of INFORMS. He is the recipient of honorary doctoral degrees from University of Groningen (1984), University of Montpellier (1995), University of Chile (1998), and University of Alicante (2000). The Institute for Scientific Information (ISI) lists Rockafellar as a highly cited researcher.

1970

Rockafellar also worked on applied problems and computational aspects. In the 1970s, he contributed to the development of the proximal point method, which underpins several successful algorithms including the proximal gradient method often used in statistical applications. He placed the analysis of expectation functions in stochastic programming on solid footing by defining and analyzing normal integrands. Rockafellar also contributed to the analysis of control systems and general equilibrium theory in economics.

1966

After graduating from Harvard, Rockafellar became Assistant Professor of Mathematics at the University of Texas, Austin, where he also was affiliated with the Department of Computer Science. After two years, he moved to University of Washington in Seattle where he filled joint positions in the Departments of Mathematics and Applied Mathematics from 1966 to 2003 when he retired. He is presently Professor Emeritus at the university. He has held adjunct positions at the University of Florida and Hong Kong Polytechnic University.

1964

Rockafellar was a visiting professor at the Mathematics Institute, Copenhagen (1964), Princeton University (1965–66), University of Grenoble (1973–74), University of Colorado, Boulder (1978), International Institute of Applied Systems Analysis, Vienna (1980–81), University of Pisa (1991), University of Paris-Dauphine (1996), University of Pau (1997), Keio University (2009), National University of Singapore (2011), University of Vienna (2011), and Yale University (2012).

1953

Rockafellar moved to Cambridge, Massachusetts to attend Harvard College in 1953. Majoring in mathematics, he graduated from Harvard in 1957 with summa cum laude. He was also elected for the Phi Beta Kappa honor society. Rockafellar was a Fulbright Scholar at the University of Bonn in 1957–58 and completed a Master of Science degree at Marquette University in 1959. Formally under the guidance of Professor Garrett Birkhoff, Rockafellar completed his Doctor of Philosophy degree in mathematics from Harvard University in 1963 with the dissertation “Convex Functions and Dual Extremum Problems.” However, at the time there was little interest in convexity and optimization at Harvard and Birkhoff was neither involved with the research nor familiar with the subject. The dissertation was inspired by the duality theory of linear programming developed by John von Neumann, which Rockafellar learned about through volumes of recent papers compiled by Albert W. Tucker at Princeton University. Rockafellar’s dissertation together with the contemporary work by Jean-Jacques Moreau in France are regarded as the birth of convex analysis.

1935

Ralph Tyrrell Rockafellar (born February 10, 1935) is an American mathematician and one of the leading scholars in optimization theory and related fields of analysis and combinatorics. He is the author of four major books including the landmark text "Convex Analysis" (1970), which has been cited more than 27,000 times according to Google Scholar and remains the standard reference on the subject, and "Variational Analysis" (1998, with Roger J-B Wets) for which the authors received the Frederick W. Lanchester Prize from the Institute for Operations Research and the Management Sciences (INFORMS).

1728

Rockafellar is a distant relative of the American business magnate and philanthropist John D. Rockefeller. They both can trace their ancestors back to two brothers named Rockenfelder that came to America from the Rhineland-Pfaltz region of Germany in 1728. Soon the spelling of the family name evolved, resulting in Rockafellar, Rockefeller, and many other versions of the name.