Age, Biography and Wiki

Sammy Boussiba was born on 30 August, 1947 in Fez, Morocco. Discover Sammy Boussiba's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 76 years old?

Popular As N/A
Occupation N/A
Age 77 years old
Zodiac Sign Virgo
Born 30 August 1947
Birthday 30 August
Birthplace Fez, Morocco
Nationality Morocco

We recommend you to check the complete list of Famous People born on 30 August. He is a member of famous with the age 77 years old group.

Sammy Boussiba Height, Weight & Measurements

At 77 years old, Sammy Boussiba height not available right now. We will update Sammy Boussiba's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.

Family
Parents Not Available
Wife Not Available
Sibling Not Available
Children Not Available

Sammy Boussiba Net Worth

His net worth has been growing significantly in 2022-2023. So, how much is Sammy Boussiba worth at the age of 77 years old? Sammy Boussiba’s income source is mostly from being a successful . He is from Morocco. We have estimated Sammy Boussiba's net worth , money, salary, income, and assets.

Net Worth in 2023 $1 Million - $5 Million
Salary in 2023 Under Review
Net Worth in 2022 Pending
Salary in 2022 Under Review
House Not Available
Cars Not Available
Source of Income

Sammy Boussiba Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia
Imdb

Timeline

2010

In recent years Prof. Boussiba's researches are focusing on genetic methods for improving microalgae in aim to produce valuable products such as carotenoids and PUFA – polyunsaturated fatty acids. One of the results of these researches is the development of a genetic engineering system for inserting genes into the genomes of two microalgal species of high economical value – Haematococcus Pluvialis for increasing the production rate of astaxanthin, and Parietochloris Incisa – for metabolic engineering of PUFA. Prof. Boussiba has led research projects in cooperation with researchers in Israel and worldwide, and during recent years he has been a partner in a large number of projects under the umbrella of the FP7 program of the European Union. He recently (2010-2013) managed the GIAVAP project- Genetically improved Algae for Valuable Products, in which ten European and two industrial companies from Israel and from abroad took part. This project was aimed at genetic modification of microalgae for production of valuable (5.4 MEuro) products. Prof. Boussiba is also a partner of the Israeli consortium for solar fuels, of the Israeli Centers of Research Excellence – ICORE, for which Ben-Gurion University was awarded with 3 million sheqels over the years 2012-2016. At the end of 2015 his lab received an additional grant of 1.7 million sheqels over three years from the Israeli Ministry of Agriculture, for developing an innovative system for vaccinating poultry against the Newcastle Disease, using genetically modified microalgae.

2003

In 2003 Boussiba was awarded an honorary doctorate (honoris causa) from the University of West Hungary, which was the first European university to establish an agriculture faculty. He was bestowed with the economical botanics chair from BGU. Since 2004 he has served in the board of directors of the International Society of Applied Phycology. In 2005 he was elected as the president of the society, and also served as its president between 2008 and 2011. In a conference which took place in Australia in June 2014, Professor Boussiba received a special award of appreciation from this society, for his continual and outstanding contribution to the field of applied phycology research. Between 2009 and 2012 Boussiba served as a member of the board of directors at the Inter-University Marine Biology and Biotechnology Institute in Eilat. In 2009 he was elected for an ad-hoc committee nominated by the National Science Academy of the United States, aimed at examining the sustainable development of algal fuels and oils, in which he served for two years. The committee's conclusions were published in a report aiming to formulate the US government's policy on alternative fuels. Since 2009 Boussiba has also served as a member of the European Algae Biomass Association (EABA), and since 2014 he has served as the head of its scientific board.

2002

Prof. Boussiba's researches, spanning over ten years of work, were the basis for the establishment of an astaxanthin production plant from the Haematococcus microalgae in Kibbutz Ketura in the Arava valley - Algatech, which has been active since 2002.

1984

In 1984, upon completing his postdoctoral studies and returning to Israel, Boussiba joined the Microalgal Biotechnology Laboratory (MBL) at Jacob Blaustein Institutes for Desert Research BIDR, BGU. He has served as the head of the lab since 1995. During the years 2001-2005 he also served as the substitute to the director of BIDR and during the years 2008-2015 he served as director of the French Associates Institute for Agriculture and Biotechnology of Drylands at BIDR.

1977

Cloning of Bti bacterial genes into the Anabaena cyanobacteria for eradication of tropical diseases: The Bacillus thuringiensis (Bt) group of bacteria is an important agent used for biological pest control. Bt is a Gram positive, aerobic bacterium which during its sporulation stage produces an endotoxin protein crystal with high toxicity and specificity against various insect larvae. Bt toxins are termed insecticidal crystal proteins (ICPs) and are active within the intestine, thus must be digested by the target organism in order to act. The subspecies Bacillus thuringienesis israelensis (Bti) was isolated by Prof. Joel Margalit and colleagues (1977). It is a specific pesticide of mosquito larvae and of black flies, which transfer a large number of tropical, sometimes fatal diseases. This subspecies produces a crystal composed of four main proteins encoded by four genes which are situated on a single plasmid within the bacterium. However, the use of Bti as a biological pesticide is limited due to its low survivability rate in natural water ponds. One of the ways to overcome the survivability hurdle is to clone the genes encoding for the toxin into other organisms which are more adapted to the harsh environments in question. Due to their large species diversity and high abundancy in natural ponds and rice fields, cyanobacteria have high potential to serve as carriers for the endotoxin genes for pest control of mosquito larvae. Moreover, cyanobacteria are able to float in the upper layer of the water, and are stable under varying environmental conditions, as well as throughout entire growth cycles of the mosquitos, which feed off the cyanobacteria. The most lethal combination of Bti genes was cloned in Prof. Boussiba's laboratory in the Anabaena PCC 7120 cyanobacteria. This pioneering work yielded a transgenic cyanobacteria stably expressing four different Bti genes. The transgenic lines are very stable and are of high toxicity to the larvae. Moreover, they survived under field conditions for longer periods of time than the commercially available Bti pesticide. Since these clones are considered genetically modified organisms (GMO), the widespread use of this technology is still limited. This project, which lasted for several years, included the training of many research students and several prestigious research grants were obtained for it. This project is an example for the fruitful cooperation between two groups which are leading in their field – Prof. Zaritsky's lab and Prof. Boussiba's, where the transgenic cyanobacteria were isolated.

1956

Sammy Boussiba was born in Fez, Morocco to a Jewish family. In 1956 he emigrated to Israel with his parents and two brothers. He began his academic path in 1969, and received his bachelor's and master's degrees from the Hebrew University of Jerusalem and from BGU. He moved on to his doctorate studies at BGU, focusing on the role of the biliprotein picocyanin C and the influence of environmental factors on its metabolism, under the supervision of Professor Amos Richmond. He completed his PhD in 1981 and continued to his postdoctoral studies at Cornell University, with scholarships from the Rothschild and Fulbright foundations. At Cornell he studied the uptake and metabolism of ammonia in cyanobacteria.