Age, Biography and Wiki

Toshikazu Sunada was born on 7 September, 1948 in Tokyo, Japan, is a mathematician. Discover Toshikazu Sunada's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 75 years old?

Popular As N/A
Occupation N/A
Age 76 years old
Zodiac Sign Virgo
Born 7 September 1948
Birthday 7 September
Birthplace Tokyo, Japan
Nationality Japan

We recommend you to check the complete list of Famous People born on 7 September. He is a member of famous mathematician with the age 76 years old group.

Toshikazu Sunada Height, Weight & Measurements

At 76 years old, Toshikazu Sunada height not available right now. We will update Toshikazu Sunada's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.

Family
Parents Not Available
Wife Not Available
Sibling Not Available
Children Not Available

Toshikazu Sunada Net Worth

His net worth has been growing significantly in 2022-2023. So, how much is Toshikazu Sunada worth at the age of 76 years old? Toshikazu Sunada’s income source is mostly from being a successful mathematician. He is from Japan. We have estimated Toshikazu Sunada's net worth , money, salary, income, and assets.

Net Worth in 2023 $1 Million - $5 Million
Salary in 2023 Under Review
Net Worth in 2022 Pending
Salary in 2022 Under Review
House Not Available
Cars Not Available
Source of Income mathematician

Toshikazu Sunada Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia
Imdb

Timeline

2005

His study of discrete geometric analysis includes a graph-theoretic interpretation of Ihara zeta functions, a discrete analogue of periodic magnetic Schrödinger operators as well as the large time asymptotic behaviors of random walk on crystal lattices. The study of random walk led him to the discovery of a "mathematical twin" of the diamond crystal out of an infinite universe of hypothetical crystals (2005). He named it the K4 crystal due to its mathematical relevance (see the linked article). What was noticed by him is that the K4 crystal has the "strong isotropy property", meaning that for any two vertices x and y of the crystal net, and for any ordering of the edges adjacent to x and any ordering of the edges adjacent to y, there is a net-preserving congruence taking x to y and each x-edge to the similarly ordered y-edge. This property is shared only by the diamond crystal (the strong isotropy should not be confused with the edge-transitivity or the notion of symmetric graph; for instance, the primitive cubic lattice is a symmetric graph, but not strongly isotropic). The K4 crystal and the diamond crystal as networks in space are examples of “standard realizations”, the notion introduced by Sunada and Motoko Kotani as a graph-theoretic version of Albanese maps (Abel-Jacobi maps) in algebraic geometry.

1988

In a joint work with Atsushi Katsuda, Sunada also established a geometric analogue of Dirichlet's theorem on arithmetic progressions in the context of dynamical systems (1988). One can see, in this work as well as the one above, how the concepts and ideas in totally different fields (geometry, dynamical systems, and number theory) are put together to formulate problems and to produce new results.

1985

Sunada's work covers complex analytic geometry, spectral geometry, dynamical systems, probability, graph theory, discrete geometric analysis, and mathematical crystallography. Among his numerous contributions, the most famous one is a general construction of isospectral manifolds (1985), which is based on his geometric model of number theory, and is considered to be a breakthrough in the problem proposed by Mark Kac in "Can one hear the shape of a drum?" (see Hearing the shape of a drum). Sunada's idea was taken up by Carolyn S. Gordon, David Webb, and Scott A. Wolpert when they constructed a counterexample for Kac's problem. For this work, Sunada was awarded the Iyanaga Prize of the Mathematical Society of Japan (MSJ) in 1987. He was also awarded Publication Prize of MSJ in 2013, the Hiroshi Fujiwara Prize for Mathematical Sciences in 2017, the Prize for Science and Technology (the Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology) in 2018, and the 1st Kodaira Kunihiko Prize in 2019.

1948

Toshikazu Sunada (砂田 利一, Sunada Toshikazu, born September 7, 1948) is a Japanese mathematician and author of many books and essays on mathematics and mathematical sciences. He is professor emeritus of both Meiji University and Tohoku University. He is also distinguished professor of emeritus at Meiji in recognition of achievement over the course of an academic career. Before he joined Meiji University in 2003, he was professor of mathematics at Nagoya University (1988–1991), at the University of Tokyo (1991–1993), and at Tohoku University (1993–2003). Sunada was involved in the creation of the School of Interdisciplinary Mathematical Sciences at Meiji University and is its first dean (2013–2017). Since 2019, he is President of Mathematics Education Society of Japan.