Age, Biography and Wiki

Carl Woese was born on 15 July, 1928 in Syracuse, New York, U.S.. Discover Carl Woese's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 84 years old?

Popular As N/A
Occupation N/A
Age 84 years old
Zodiac Sign Cancer
Born 15 July, 1928
Birthday 15 July
Birthplace Syracuse, New York
Date of death (2012-12-30) Urbana, Illinois, U.S.
Died Place Urbana, Illinois
Nationality United States

We recommend you to check the complete list of Famous People born on 15 July. He is a member of famous with the age 84 years old group.

Carl Woese Height, Weight & Measurements

At 84 years old, Carl Woese height not available right now. We will update Carl Woese's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.

Family
Parents Not Available
Wife Not Available
Sibling Not Available
Children Not Available

Carl Woese Net Worth

His net worth has been growing significantly in 2022-2023. So, how much is Carl Woese worth at the age of 84 years old? Carl Woese’s income source is mostly from being a successful . He is from United States. We have estimated Carl Woese's net worth , money, salary, income, and assets.

Net Worth in 2023 $1 Million - $5 Million
Salary in 2023 Under Review
Net Worth in 2022 Pending
Salary in 2022 Under Review
House Not Available
Cars Not Available
Source of Income

Carl Woese Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia
Imdb

Timeline

2012

Woese died on December 30, 2012, following complications from pancreatic cancer, leaving as survivors his wife Gabriella and a son and daughter.

1984

Woese was a MacArthur Fellow in 1984, was made a member of the National Academy of Sciences in 1988, received the Leeuwenhoek Medal (microbiology's highest honor) in 1992, the Selman A. Waksman Award in Microbiology in 1995 from the National Academy of Sciences, and was a National Medal of Science recipient in 2000. In 2003, he received the Crafoord Prize from the Royal Swedish Academy of Sciences "for his discovery of a third domain of life". He was elected to the American Philosophical Society in 2004. In 2006, he was made a foreign member of the Royal Society.

1980

Acceptance of the validity of Woese's phylogenetically valid classification was a slow process. Prominent biologists including Salvador Luria and Ernst Mayr objected to his division of the prokaryotes. Not all criticism of him was restricted to the scientific level. A decade of labor-intensive oligonucleotide cataloging left him with a reputation as "a crank," and Woese would go on to be dubbed as "Microbiology's Scarred Revolutionary" by a news article printed in the journal Science. The growing body of supporting data led the scientific community to accept the Archaea by the mid-1980s. Today, few scientists cling to the idea of a unified Prokarya.

1977

In 1977, Carl Woese and George E. Fox experimentally disproved this universally held hypothesis about the basic structure of the tree of life. Woese and Fox discovered a kind of microbial life which they called the “archaebacteria” (Archaea). They reported that the archaebacteria comprised "a third kingdom" of life as distinct from bacteria as plants and animals. Having defined Archaea as a new "urkingdom" (later domain) which were neither bacteria nor eukaryotes, Woese redrew the taxonomic tree. His three-domain system, based on phylogenetic relationships rather than obvious morphological similarities, divided life into 23 main divisions, incorporated within three domains: Bacteria, Archaea, and Eucarya.

Woese also speculated about an era of rapid evolution in which considerable horizontal gene transfer occurred between organisms. First described by Woese and Fox in a 1977 paper and explored further with microbiologist Jane Gibson in a 1980 paper, these organisms, or progenotes, were imagined as protocells with very low complexity due to their error-prone translation apparatus ("noisy genetic transmission channel"), which produced high mutation rates that limited the specificity of cellular interaction and the size of the genome. This early translation apparatus would have produced a group of structurally similar, functionally equivalent proteins, rather than a single protein. Furthermore, because of this reduced specificity, all cellular components were susceptible to horizontal gene transfer, and rapid evolution occurred at the level of the ecosystem.

Microbiologist Justin Sonnenburg of Stanford University said "The 1977 paper is one of the most influential in microbiology and arguably, all of biology. It ranks with the works of Watson and Crick and Darwin, providing an evolutionary framework for the incredible diversity of the microbial world".

1962

In 1962, Woese spent several months as a visiting researcher at the Pasteur Institute in Paris, a locus of intense activity on the molecular biology of gene expression and gene regulation. While in Paris, he met Sol Spiegelman, who invited Woese to visit the University of Illinois after hearing his research goals; at this visit Spiegelman offered Woese a position with immediate tenure beginning in the fall of 1964. With the freedom to patiently pursue more speculative threads of inquiry outside the mainstream of biological research, Woese began to consider the genetic code in evolutionary terms, asking how the codon assignments and their translation into an amino acid sequence might have evolved.

For much of the 20th century, prokaryotes were regarded as a single group of organisms and classified based on their biochemistry, morphology and metabolism. In a highly influential 1962 paper, Roger Stanier and C. B. van Niel first established the division of cellular organization into prokaryotes and eukaryotes, defining prokaryotes as those organisms lacking a cell nucleus. Adapted from Édouard Chatton's generalization, Stanier and Van Niel's concept was quickly accepted as the most important distinction among organisms; yet they were nevertheless skeptical of microbiologists' attempts to construct a natural phylogenetic classification of bacteria. However, it became generally assumed that all life shared a common prokaryotic (implied by the Greek root πρό (pro-), before, in front of) ancestor.

1960

Woese turned his attention to the genetic code while setting up his lab at General Electric's Knolls Laboratory in the fall of 1960. Interest among physicists and molecular biologists had begun to coalesce around deciphering the correspondence between the twenty amino acids and the four letter alphabet of nucleic acid bases in the decade following James D. Watson, Francis Crick, and Rosalind Franklin's discovery of the structure of DNA in 1953. Woese published a series of papers on the topic. In one, he deduced a correspondence table between what was then known as "soluble RNA" and DNA based upon their respective base pair ratios. He then re-evaluated experimental data associated with the hypothesis that viruses used one base, rather than a triplet, to encode each amino acid, and suggested 18 codons, correctly predicting one for proline. Other work established the mechanistic basis of protein translation, but in Woese's view, largely overlooked the genetic code's evolutionary origins as an afterthought.

1953

In 1953, he completed a PhD in biophysics at Yale University, where his doctoral research focused on the inactivation of viruses by heat and ionizing radiation. He studied medicine at the University of Rochester for two years, quitting two days into a pediatrics rotation. Then he became a postdoctoral researcher in biophysics at Yale University investigating bacterial spores. From 1960–63, he worked as a biophysicist at the General Electric Research Laboratory in Schenectady, New York. In 1964, Woese joined the microbiology faculty of the University of Illinois at Urbana–Champaign, where he focused on Archaea, genomics, and molecular evolution as his areas of expertise. He became a professor at the University of Illinois at Urbana–Champaign's Carl R. Woese Institute for Genomic Biology, which was renamed in his honor in 2015, after his death.

1928

Carl Richard Woese (/ˈwoʊz/; July 15, 1928 – December 30, 2012) was an American microbiologist and biophysicist. Woese is famous for defining the Archaea (a new domain of life) in 1977 through a pioneering phylogenetic taxonomy of 16S ribosomal RNA, a technique that has revolutionized microbiology. He also originated the RNA world hypothesis in 1967, although not by that name. Woese held the Stanley O. Ikenberry Chair and was professor of microbiology at the University of Illinois at Urbana–Champaign.

Carl Woese was born in Syracuse, New York on July 15, 1928. Woese attended Deerfield Academy in Massachusetts. He received a bachelor's degree in mathematics and physics from Amherst College in 1950. During his time at Amherst, Woese took only one biology course (Biochemistry, in his senior year) and had "no scientific interest in plants and animals" until advised by William M. Fairbank, then an assistant professor of physics at Amherst, to pursue biophysics at Yale.