Age, Biography and Wiki

Carver Mead (Carver Andress Mead) was born on 1 May, 1934 in Bakersfield, California, U.S., is an engineer. Discover Carver Mead's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 89 years old?

Popular As Carver Andress Mead
Occupation N/A
Age 90 years old
Zodiac Sign Taurus
Born 1 May, 1934
Birthday 1 May
Birthplace Bakersfield, California, U.S.
Nationality United States

We recommend you to check the complete list of Famous People born on 1 May. He is a member of famous engineer with the age 90 years old group.

Carver Mead Height, Weight & Measurements

At 90 years old, Carver Mead height not available right now. We will update Carver Mead's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.

Family
Parents Not Available
Wife Not Available
Sibling Not Available
Children Not Available

Carver Mead Net Worth

His net worth has been growing significantly in 2022-2023. So, how much is Carver Mead worth at the age of 90 years old? Carver Mead’s income source is mostly from being a successful engineer. He is from United States. We have estimated Carver Mead's net worth , money, salary, income, and assets.

Net Worth in 2023 $1 Million - $5 Million
Salary in 2023 Under Review
Net Worth in 2022 Pending
Salary in 2022 Under Review
House Not Available
Cars Not Available
Source of Income engineer

Carver Mead Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia
Imdb

Timeline

1999

Around 1999, Mead and others established Foveon, Inc. in Santa Clara, California to develop new digital camera technology based on neurally-inspired CMOS image sensor/processing chips. The image sensors in the Foveon X3 digital camera captured multiple colors for each pixel, detecting red, green and blue at different levels in the silicon sensor. This provided more complete information and better quality photos compared to standard cameras, which detect one color per pixel. It has been hailed as revolutionary. In 2005, Carver Mead, Richard B. Merrill and Richard Lyon of Foveon were awarded the Progress Medal of the Royal Photographic Society, for the development of the Foveon X3 sensor.

1995

Mead's work underlies the development of computer processors whose electronic components are connected in ways that resemble biological synapses. In 1995 and 1996 Mead, Hasler, Diorio, and Minch presented single-transistor silicon synapses capable of analog learning applications and long-term memory storage. Mead pioneered the use of floating-gate transistors as a means of non-volatile storage for neuromorphic and other analog circuits.

1991

In 1991, Mead helped to form Sonix Technologies, Inc. (later Sonic Innovations Inc.). Mead designed the computer chip for their hearing aids. In addition to being small, the chip was said to be the most powerful used in a hearing aid. Release of the company's first product, the Natura hearing aid, took place in September 1998.

1988

In 1988, Richard F. Lyon and Carver Mead described the creation of an analog cochlea, modelling the fluid-dynamic traveling-wave system of the auditory portion of the inner ear. Lyon had previously described a computational model for the work of the cochlea. Such technology had potential applications in hearing aids, cochlear implants, and a variety of speech-recognition devices. Their work has inspired ongoing research attempting to create a silicon analog that can emulate the signal processing capacities of a biological cochlea.

1986

In 1986, Mead and Federico Faggin founded Synaptics Inc. to develop analog circuits based in neural networking theories, suitable for use in vision and speech recognition. The first product Synaptics brought to market was a pressure-sensitive computer touchpad, a form of sensing technology that rapidly replaced the trackball and mouse in laptop computers. The Synaptics touchpad was extremely successful, at one point capturing 70% of the touchpad market.

1981

Their work caused a paradigm shift, a "fundamental reassessment" of the development of integrated circuits, and "revolutionized the world of computers". In 1981, Mead and Conway received the Award for Achievement from Electronics Magazine in recognition of their contributions. More than 30 years later, the impact of their work is still being assessed.

Building on the ideas of VLSI design, Mead and his PhD student David L. Johannsen created the first silicon compiler, capable of taking a user's specifications and automatically generating an integrated circuit. Mead, Johannsen, Edmund K. Cheng and others formed Silicon Compilers Inc. (SCI) in 1981. SCI designed one of the key chips for Digital Equipment Corporation's MicroVAX minicomputer.

1980

A pioneer of modern microelectronics, he has made contributions to the development and design of semiconductors, digital chips, and silicon compilers, technologies which form the foundations of modern very-large-scale integration chip design. In the 1980s, he focused on electronic modelling of human neurology and biology, creating "neuromorphic electronic systems." Mead has been involved in the founding of more than 20 companies. Most recently, he has called for the reconceptualization of modern physics, revisiting the theoretical debates of Niels Bohr, Albert Einstein and others in light of later experiments and developments in instrumentation.

In the late 1980s, Mead advised Misha Mahowald, a PhD student in computation and neural systems, to develop the silicon retina, using analog electrical circuits to mimic the biological functions of rod cells, cone cells, and other excitable cells in the retina of the eye. Mahowald's 1992 thesis received Caltech's Milton and Francis Clauser Doctoral Prize for its originality and "potential for opening up new avenues of human thought and endeavor". As of 2001 her work was considered "the best attempt to date" to develop a stereoscopic vision system. Mead went on to describe an adaptive silicon retina, using a two-dimensional resistive network to model the first layer of visual processing in the outer plexiform layer of the retina.

1975

Beginning in 1975, Carver Mead collaborated with Lynn Conway from Xerox PARC. They developed the landmark text Introduction to VLSI systems, published in 1979, an important spearhead of the Mead and Conway revolution. A pioneering textbook, it has been used in VLSI integrated circuit education all over the world for decades. The circulation of early preprint chapters in classes and among other researchers attracted widespread interest and created a community of people interested in the approach. They also demonstrated the feasibility of multi-project shared-wafer methodology, creating chips for students in their classes.

1970

He taught the world's first LSI design course, at Caltech in 1970. Throughout the 1970s, with involvement and feedback from a succession of classes, Mead developed his ideas of integrated circuit and system design. He worked with Ivan Sutherland and Frederick B. Thompson to establish computer science as a department at Caltech, which formally occurred in 1976. Also in 1976, Mead co-authored a DARPA report with Ivan Sutherland and Thomas Eugene Everhart, assessing the limitations of current microelectronics fabrication and recommending research into the system design implications of "very-large-scale integrated circuits".

1968

Stimulated by Moore's question, Mead and his students began a physics-based analysis of possible materials, trying to determine a lower bound for Moore's Law. In 1968, Mead demonstrated, contrary to common assumptions, that as transistors decreased in size, they would not become more fragile or hotter or more expensive or slower. Rather, he argued that transistors would get faster, better, cooler and cheaper as they were miniaturized. His results were initially met with considerable skepticism, but as designers experimented, results supported his assertion. In 1972, Mead and graduate student Bruce Hoeneisen predicted that transistors could be made as small as 0.15 microns. This lower limit to transistor size was considerably smaller than had been generally expected. Despite initial doubts, Mead's prediction influenced the computer industry's development of submicron technology. When Mead's predicted target was achieved in actual transistor development in 2000, the transistor was highly similar to the one Mead had originally described.

1967

Next Mead began to explore the potential for modelling biological systems of computation: animal and human brains. His interest in biological models dated back at least to 1967, when he met biophysicist Max Delbrück. Delbrück had stimulated Mead's interest in transducer physiology, the transformations that occur between the physical input initiating a perceptual process and eventual perceptual phenomena.

1966

In 1966, Mead designed the first gallium arsenide gate field-effect transistor using a Schottky barrier diode to isolate the gate from the channel. As a material, GaAs offers much higher electron mobility and higher saturation velocity than silicon. The GaAs MESFET became the dominant microwave semiconductor device, used in a variety of high-frequency wireless electronics, including microwave communication systems in radio telescopes, satellite dishes and cellular phones. Carver's work on MESFETs also became the basis for the later development of HEMTs by Fujitsu in 1980. HEMTs, like MESFETs, are accumulation-mode devices used in microwave receivers and telecommunication systems.

1965

Mead is credited by Gordon Moore with coining the term Moore's law, to denote the prediction Moore made in 1965 about the growth rate of the component count, "a component being a transistor, resistor, diode or capacitor," fitting on a single integrated circuit. Moore and Mead began collaborating around 1959 when Moore gave Mead "cosmetic reject" transistors from Fairchild Semiconductor for his students to use in his classes. During the 1960s Mead made weekly visits to Fairchild, visiting the research and development labs and discussing their work with Moore. During one of their discussions, Moore asked Mead whether electron tunneling might limit the size of a workable transistor. When told that it would, he asked what the limit would be.

1960

Mead's contributions have arisen from the application of basic physics to the development of electronic devices, often in novel ways. During the 1960s, he carried out systematic investigations into the energy behavior of electrons in insulators and semiconductors, developing a deep understanding of electron tunneling, barrier behavior and hot electron transport. In 1960, he was the first person to describe and demonstrate a three-terminal solid-state device based on the operating principles of electron tunneling and hot-electron transport. In 1962 he demonstrated that using tunnel emission, hot electrons retained energy when traveling nanometer distances in gold. His studies of III-V compounds (with W. G. Spitzer) established the importance of interface states, laying the groundwork for band-gap engineering and the development of heterojunction devices.

1956

Mead studied electrical engineering at Caltech, getting his BS in 1956, his MS in 1957, and his PhD degree in 1960.

1934

Carver Andress Mead (born May 1, 1934) is an American scientist and engineer. He currently holds the position of Gordon and Betty Moore Professor Emeritus of Engineering and Applied Science at the California Institute of Technology (Caltech), having taught there for over 40 years. He taught Deborah Chung, the first female engineering graduate of Caltech. He advised the first female electrical engineering student at Caltech, Louise Kirkbride. His contributions as a teacher include the classic textbook Introduction to VLSI Systems (1980), which he coauthored with Lynn Conway.