Age, Biography and Wiki

John D. Lawson (scientist) was born on 4 April, 1923, is an engineer. Discover John D. Lawson (scientist)'s Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 85 years old?

Popular As N/A
Occupation N/A
Age 85 years old
Zodiac Sign Aries
Born 4 April, 1923
Birthday 4 April
Birthplace N/A
Date of death 15 January 2008
Died Place N/A
Nationality

We recommend you to check the complete list of Famous People born on 4 April. He is a member of famous engineer with the age 85 years old group.

John D. Lawson (scientist) Height, Weight & Measurements

At 85 years old, John D. Lawson (scientist) height not available right now. We will update John D. Lawson (scientist)'s Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.

Family
Parents Not Available
Wife Not Available
Sibling Not Available
Children Not Available

John D. Lawson (scientist) Net Worth

His net worth has been growing significantly in 2022-2023. So, how much is John D. Lawson (scientist) worth at the age of 85 years old? John D. Lawson (scientist)’s income source is mostly from being a successful engineer. He is from . We have estimated John D. Lawson (scientist)'s net worth , money, salary, income, and assets.

Net Worth in 2023 $1 Million - $5 Million
Salary in 2023 Under Review
Net Worth in 2022 Pending
Salary in 2022 Under Review
House Not Available
Cars Not Available
Source of Income engineer

John D. Lawson (scientist) Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia
Imdb

Timeline

1977

He returned to the Rutherford Appleton Laboratory in 1977 where he continued working on free electron lasers and accelerator design, and also played a leading international role in promoting and critically examining ideas for future accelerators. In the early 1980s he recognized the potential that high-power lasers could have for particle acceleration, and set up a small research group in lasers base on the concept of plasma acceleration. He retired in 1987.

1961

Lawson also worked with the 175 MeV cyclotron and on early accelerator proposals. He remained on the staff of the AERE to 1961, spending 1959-1960 as Research Associate at the W.W. Hansen Laboratories at Stanford where his work included the study of the properties of caesium plasma.

In 1961 Lawson was transferred to the newly established National Institute for Research in Nuclear Science, placed very close to Harwell village, an institution shortly to become the Rutherford Appleton Laboratory. He continued his work on accelerators and led the project to build the Variable Energy Cyclotron (for AERE Harwell). He had responsibility for building up the superconducting magnet programme and retained an interest in new accelerator concepts. In the 1970s he moved onto the study of very high current beams and, in 1977, his book The Physics of Charged Particle Beams was published (second edition 1989), which became a classic textbook on particle accelerators. In 1975-1976 Lawson returned to fusion research with a two-year sabbatical at the Culham Laboratory, working on a design study of a conceptual fusion power reactor based on the reversed field pinch principle.

1959

Lawson was awarded the University of Cambridge Sc.D. in Physics in 1959 and made a Fellow of the Institute of Physics in 1970. In 1983 he was elected a Fellow of Royal Society for his contributions to the field of applied electromagnetism, in particular the physics of charged particle beams and high temperature plasmas.

1955

He was noted for his 1955 paper, published in 1957, "Some Criteria for a Power Producing Thermonuclear Reactor," (Proc. Phys. Soc. Vol. 70, pt. 1, no. 445, B, 6-10, 1957), where he presented for the first time to the public his famous criterion: Lawson criterion.

He is particularly remembered for the Lawson criterion, a general measure of a system that defines the conditions needed for a fusion reactor to achieve net power. Formulated in 1955, it was first published in 1957, in 'Some criteria for a power producing thermonuclear reactor', (Proc. Phys. Soc. vol. 70, pt. 1, no. 445, B, 6-10).

1951

In 1951 he was transferred to the General Physics Division of the AERE at Harwell. Lawson started to work on the klystron, a device for producing high-power microwaves, in a group led by Peter Thonemann who was also in charge of the ZETA (Zero Energy Toroidal Assembly) fusion work. It was through Lawson's association with Thonemann that he became interested in the topic of nuclear fusion.

1947

At the end of the war Lawson continued to work at Malvern, although in 1947 he was made a member of the staff of the Atomic Energy Research Establishment (AERE). He undertook experimental work with the new 30 MeV synchrotron.

1943

He was born in Coventry and educated at Wolverhampton Grammar School before going on to St John's College, Cambridge, to study for the short (two year) Mechanical Sciences degree, including a special wartime radio course. He graduated BA in 1943 and then joined the Telecommunications Research Establishment, Malvern, where he was assigned to work on microwave antenna design as part of the ongoing work on development of radar.

1923

John David Lawson FRS (4 April 1923 – 15 January 2008) was a British engineer and physicist.