Age, Biography and Wiki
Jozef Cywinski was born on 13 March, 1936 in Warsaw, Poland. Discover Jozef Cywinski's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 87 years old?
Popular As |
N/A |
Occupation |
N/A |
Age |
88 years old |
Zodiac Sign |
Pisces |
Born |
13 March, 1936 |
Birthday |
13 March |
Birthplace |
Warsaw, Poland |
Nationality |
Poland |
We recommend you to check the complete list of Famous People born on 13 March.
He is a member of famous with the age 88 years old group.
Jozef Cywinski Height, Weight & Measurements
At 88 years old, Jozef Cywinski height not available right now. We will update Jozef Cywinski's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.
Physical Status |
Height |
Not Available |
Weight |
Not Available |
Body Measurements |
Not Available |
Eye Color |
Not Available |
Hair Color |
Not Available |
Dating & Relationship status
He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.
Family |
Parents |
Not Available |
Wife |
Not Available |
Sibling |
Not Available |
Children |
Not Available |
Jozef Cywinski Net Worth
His net worth has been growing significantly in 2022-2023. So, how much is Jozef Cywinski worth at the age of 88 years old? Jozef Cywinski’s income source is mostly from being a successful . He is from Poland. We have estimated
Jozef Cywinski's net worth
, money, salary, income, and assets.
Net Worth in 2023 |
$1 Million - $5 Million |
Salary in 2023 |
Under Review |
Net Worth in 2022 |
Pending |
Salary in 2022 |
Under Review |
House |
Not Available |
Cars |
Not Available |
Source of Income |
|
Jozef Cywinski Social Network
Instagram |
|
Linkedin |
|
Twitter |
|
Facebook |
|
Wikipedia |
|
Imdb |
|
Timeline
In 2007, Cywinski became manager and sole shareholder of EMSTIM, EURL, in Paris. EMSTIM is a research institute for the development of medical devices and therapeutics. It is currently accredited by the French Ministry of Higher Education as an R&D institute for developments in medical technologies. This resulted in a Veinoplus patent (assigned to Ad Rem Technology) and to more developments of novel electro-stimulation devices/techniques.
In 2005, Cywinski moved to Paris, France and was a consultant to Ad Rem Technology SARL, where he invented the Veinoplus stimulator to correct impaired blood circulation in leg veins. In September 2010, Cywinski was invited by Peter Glovitzki, director of the Mayo Clinic's Gonda Vascular Institute to lecture on the application of the Veinoplus at the Mayo Clinic Continued Medical Education Seminar in Paris.
The Olympic Committee under Professor Samaranch and Patrick Shamash, MD approved the use of these stimulators for athletes as a natural (non-doping) means of improving muscle performance. Additionally, at the World Olympic Museum in Lausanne (2003–2004), Laurent River organized the exhibition 'Sports Performance et Equilibre' in which Cywinski's stimulators were exhibited.
During this time in Switzerland some of Cywinski's projects and highlights included the development of stimulators for functional rehabilitation in cooperation with Professor Charles Gobelet, director of SUVA, a public sector insurer in Switzerland as well as the development of stimulators for skin rejuvenation which was performed in conjunction with Dr. Welli, the medical director of Clinique La Prairie (Clarins, Switzerland). In the years 1999 through 2005 he was invited by Jean-Pierre Rausis and Professor Herve Borland, Ph.D. to serve as one of the directors of the scientific board of the world-famous Dalle Molle Institute of Artificial Intelligence in Martigny, Switzerland.
In 1996, he was invited by the Royal Society of Medicine in London to give a lecture on his research interests.
In 1994, the Swiss Federation president, Mr. Schmidthalter, asked Cywinski to come to Switzerland and build a medical device business in Sion using the building that had originally been used for Switzerland's artificial heart program. Cywinski took over the building and constructed two ventures; Valmed Ltd and the R&D Institute of Medical Technology (ITM). At Valmed Ltd, Cywinski, as CEO and managing director developed and manufactured neuromuscular stimulators for physiotherapy and sports medicine. The Institute of Medical Technology was a non-profit foundation for R&D in new medical technologies. Within ITM he continued lecturing, conferences and publishing research in the field of neuromuscular stimulation with a particular focus on improvements in sports performance. He pursued his applied research interests with Professor Gerta Vrbova of University College London, Professors Olga Hudlická and Mary Brown of the University of Birmingham and Professor Oona Scott of Imperial College London. Together their research led to the fabrication of neuromuscular stimulators which successfully produced non-fatiguing muscle cell behaviour and increased muscle strength in healthy volunteers and children with muscular dysfunction.
Most of Cywinski's career was in academia, but in 1986 he voluntarily retired from MGH-Harvard-MIT and created a business around one of his inventions for the medical imaging field. Cywinski co-founded Medinet, Inc. in New York. There, with the able help of his son (MIT graduate) L. Mark Cywinski, he developed the world's first computerized medical picture archiving and communication system (PACS) and imaging workstations for Doppler ultrasound scanners.
In 1983 during his summer sabbatical leave from Harvard he did joint research with Professor Geoffery Kidd at the Sherrington Laboratory at the University of Liverpool, UK. This joint effort led to many publications and a joint patent on stimulators using Motor Unit Action Potential (MUAP) patterns for neuromuscular stimulation. Additionally, during his time in Boston, he served as a Federal Court-appointed expert in patent litigations between the major manufacturers of cardiac pacemakers.
While continuously active in science, Cywinski's work and contacts led him into politics. In the years from 1979 to 1984 Cywinski was a trustee for the Presidential Committee of Ronald Reagan. In 1987, during the demise of the Communist era in Eastern Europe, Cywinski was asked by Zbigniew Brzezinski, the US Security Advisor to President Carter, to consult with the United States Senate Committee on Foreign Relations headed by Senator Richard Lugar to develop the economical aid program to Poland. As a result, the Polish-American Enterprise Fund (PAEF) was created. The PAEF brought multimillion-dollar financial aid to assist in creating many new, small, private-capital companies in post-communist Poland.
In 1978, for his pioneering work in the field of cardiac pacing and bio-galvanic batteries, Cywinski was nominated as Fellow of the American College of Cardiology.
A year later, he was invited to join the faculty of Harvard Medical School as a principal associate in anesthesia and bioengineering. Simultaneously, he was invited to join the faculty of a newly created program combining the medical curriculum of Harvard Medical School with the graduate program of electrical engineering at the Massachusetts Institute of Technology (MIT). He developed a new graduate-level course (HST-510) in medical engineering. For students, this was a five-year program that included medical school, medical engineering lectures and laboratory work. This program was carried out at Massachusetts General Hospital (MGH) in Boston. There, in 1974, Cywinski created the first Department of Medical Engineering in the U.S. as well as taking on the position of director. His activities included planning, development, purchase and service of patient monitoring systems in this 2000-bed hospital.
In 1970, Cywinski accepted a teaching offer as an associate professor of radiology and an associate professor of electrical engineering from the University of Missouri Medical School in Columbia Missouri. He developed and taught a course regarding electro-medical devices for diagnosis and therapy. Additionally, he collaborated with Allan Hahn in the animal laboratory facility developing implantable fuel cells.
While at MGH/MIT, Cywinski developed bio-galvanic implantable cardiac stimulators. In 3- to 5-year tests performed by Professor Allan Hahn and his team at the Animal Research Center of the University of Missouri, the bio-galvanic pacemakers implanted in dogs functioned well with a projected lifespan of over 50 years. This was in the early 1970s when the industry-wide standard was to use mercury batteries in implantable cardiac pacemakers, which lasted only two years. At the same time, the leading manufacturer of pacemakers heavily invested in the development of nuclear batteries with similar projected life spans of 50–80 years. They were quickly abandoned due to nuclear waste handling problems. Cywinski's bio-galvanic pacemakers were not adopted by the industry, either. In the end, all implantable power sources were narrowed down to lithium cells which then became the industry standard.
In 1967, he demonstrated his own construction of a working prototype of a Digital Radiochromatograph. A first of its kind, it computed in binary code fractional ratios of blood proteins. He publicly defended his thesis in front of the joint faculty of the Medical University of Warsaw and the Warsaw University of Technology and received a Doctor in Science (Bioengineering) degree (Ph.D./D.Sc.) from the latter.
Cywinski spent six months in Paris, France waiting for immigration papers to the United States. During this time, Cywinski completed two projects. Firstly, with Professor Renaud Koechlin, at Hopital Foch in Suresnes, Paris, he developed the first satellite transmission interface device for tele-diagnosis of vectorcardiograms. Telediagnosis was made between the University of Tours, France and Washington University in St. Louis, Missouri, in the United States via satellite and on-line communication with computer systems. He was asked to demonstrate his work to General Charles de Gaulle and members of the French government. He was then asked to join the Electronique Appliquée Laboratoire (ELA) in Montrouge, France. There he developed the first European prototype of an implantable on-demand cardiac pacemaker. The prototype was implanted in Paris in October 1967 for the first time by dr. Mugica at Pitié-Salpêtrière Hospital, during a midnight emergency intervention. Despite the lack of animal trials, the pacemaker saved the patient's life and allowed him to live for several more years. Today, Cywinski-type on-demand pacers are still manufactured by the ELA-SORIN factory and widely used throughout the world.
In 1967, Cywinski began work on the NIH-sponsored Artificial Heart Project. After only two years and with a team of two surgeons Waldemar J. Wajszczuk M.D. and Ahmed Kutty, M.D., Cywinski developed and published an analog computer model of the physiologic rate and contractility controls for artificial hearts. However, NIH sponsored work did not continue past this point and artificial heart research shifted to private industry.
At the Cardiology Institute, Cywinski created the world's first P-wave controlled external cardiac pacemaker and a new technique for ECG recording. The animal research on this pacemaker was completed in 1964 and Cywinski submitted the project to be presented at the World Congress of Bioengineering in Tokyo, Japan. He was invited to present his paper on P-wave pacemakers in September, 1965 at the plenary session of the Congress. Cywinski was extended an invitation to join the artificial heart program under Professor Leslie Peterson M.D. at the University of Pennsylvania pending the completion of his doctorate studies in Poland.
For Cywinski's doctorate degree, which began in 1962, he continued the joint endeavor with the Medical University of Warsaw and the Warsaw University of Technology. During this time he became the director of the Electronics Laboratory at the Institute of Cardiology, at the Medical University of Warsaw. He wrote papers on the electro-stimulation of heart and a doctorate thesis on automatic analysis radio chromatograms of blood.
In 1960, Cywinski received a Master of Science degree in Medical Engineering.
This instrument was also essential for the graduate diploma work and discovery of light and heavy fractions of myosine (muscle cell proteins) of Cywinski's wife, Hanna Zawistowska, a biochemist herself. Cywinski worked as a full-time engineer in the Laboratory of Applied Physics at the Warsaw Pol where he constructed vacuum-tube electrometers. It was thanks to the use of Cywinski's electrometers that the first European semiconductor-charge copying machine was developed. Later, in 1959 he worked at the Laboratory of Computer Science of the Warsaw University of Technology where he built vacuum-tube registers for the first Polish-made computer.
Three years later, in 1955, Cywinski enrolled in a newly created graduate program in Medical Electronics, which was a joint venture between the University of Warsaw Medical School (Akademia Medyczna) and the Warsaw Poytech. Here, Cywinski constructed his first invention: a linear-motor automatic scanner for chromatography of blood samples. The analyzer was the first of its kind and type developed at these times in Poland.
Jozef Cywinski (Polish: Józef Cywiński) (born on 13 March 1936) is a Polish-American scientist, a specialist in the field of biomedical engineering and specifically in electrical stimulation of living organisms. His work has been the subject of 12 patents, two books and over 100 scientific publications. He developed several first-on-the-market electro-medical devices like cardiac stimulators pacemakers, train-of-four nerve stimulators, PACS, EMS, TENS and Veinoplus calf pump stimulators.
Jozef Cywinski was born in pre-war Warsaw, Poland in 1936. During World War II his family was heavily involved with the underground fighting against the Nazi. Because his family is part of a noble Polish family (using the Puchala coat of arms), the Cywinski family lost their residence and resources in Warsaw and moved to the small city of Bielsko in a mountainous region in the south of Poland. Circumstances like these were common with disastrous effects on millions of Poles. Cywinski, like many others did not receive the typical education most students would receive in school during peaceful times. In 1945, several displaced professors from Lviv and Vilnius Universities settled in Bielsko too, creating an accelerated and highly sophisticated climate in which to learn. They taught Cywinski physics, chemistry and math personally, while he attended the Liceum im. Kopernika. There, he was awarded a Leader in Science and Social Work certificate. Graduating from high school, he won the concourse for admission to the Telecommunications Program at the Warsaw Polytech [Politechnika Warszawska]. At the age of 16 he was one of the youngest students ever admitted there.