Age, Biography and Wiki
Omar Khayyam (Ghiyath al-Din Abul Fateh Omar Ibn Ibrahim al-Khayyam) was born on 15 May, 1048 in Neyshabur, Iran, is a Persian poet, philosopher, mathematician, and astronomer. Discover Omar Khayyam's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of Omar Khayyam networth?
Popular As |
Ghiyath al-Din Abul Fateh Omar Ibn Ibrahim al-Khayyam |
Occupation |
miscellaneous |
Age |
75 years old |
Zodiac Sign |
Taurus |
Born |
15 May, 1048 |
Birthday |
15 May |
Birthplace |
Nishapur, Khorasan, Persia |
Date of death |
December 4, 1131 |
Died Place |
Nishapur, Khorasan, Persia |
Nationality |
Iran |
We recommend you to check the complete list of Famous People born on 15 May.
He is a member of famous Miscellaneous with the age 75 years old group.
Omar Khayyam Height, Weight & Measurements
At 75 years old, Omar Khayyam height not available right now. We will update Omar Khayyam's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.
Physical Status |
Height |
Not Available |
Weight |
Not Available |
Body Measurements |
Not Available |
Eye Color |
Not Available |
Hair Color |
Not Available |
Dating & Relationship status
He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.
Family |
Parents |
Not Available |
Wife |
Not Available |
Sibling |
Not Available |
Children |
Not Available |
Omar Khayyam Net Worth
His net worth has been growing significantly in 2022-2023. So, how much is Omar Khayyam worth at the age of 75 years old? Omar Khayyamâs income source is mostly from being a successful Miscellaneous. He is from Iran. We have estimated
Omar Khayyam's net worth
, money, salary, income, and assets.
Net Worth in 2023 |
$1 Million - $5 Million |
Salary in 2023 |
Under Review |
Net Worth in 2022 |
Pending |
Salary in 2022 |
Under Review |
House |
Not Available |
Cars |
Not Available |
Source of Income |
Miscellaneous |
Omar Khayyam Social Network
Timeline
Khayyam considered himself intellectually to be a student of Avicenna. According to Al-Bayhaqi, he was reading the metaphysics in Avicenna's the Book of Healing before he died. There are six philosophical papers believed to have been written by Khayyam. One of them, On existence (Fi’l-wujūd), was written originally in Persian and deals with the subject of existence and its relationship to universals. Another paper, titled The necessity of contradiction in the world, determinism and subsistence (Darurat al-tadād fi’l-‘ālam wa’l-jabr wa’l-baqā’), is written in Arabic and deals with free will and determinism. The titles of his other works are On being and necessity (Risālah fī’l-kawn wa’l-taklīf), The Treatise on Transcendence in Existence (Al-Risālah al-ulā fi’l-wujūd), On the knowledge of the universal principles of existence (Risālah dar ‘ilm kulliyāt-i wujūd), and Abridgement concerning natural phenomena (Mukhtasar fi’l-Tabi‘iyyāt).
One of his pupils Nizami Aruzi of Samarcand relates that Khayyam apparently did not have a belief in astrology and divination: "I did not observe that he (scil. Omar Khayyam) had any great belief in astrological predictions, nor have I seen or heard of any of the great [scientists] who had such belief." While working for Sultan Sanjar as an astrologer he was asked to predict the weather – a job that he apparently did not do well. George Saliba (2002) explains that the term ‘ilm al-nujūm, used in various sources in which references to Omar's life and work could be found, has sometimes been incorrectly translated to mean astrology. He adds: "from at least the middle of the tenth century, according to Farabi's enumeration of the sciences, that this science, ‘ilm al-nujūm, was already split into two parts, one dealing with astrology and the other with theoretical mathematical astronomy."
Google released two Google Doodles commemorating him. The first was on his 964th birthday on 18 May 2012. The second was on his 971st birthday on 18 May 2019.
Rashed and Vahabzadeh (2000) have argued that because of his thoroughgoing geometrical approach to algebraic equations, Khayyam can be considered the precursor of Descartes in the invention of analytic geometry. In The Treatise on the Division of a Quadrant of a Circle Khayyam applied algebra to geometry. In this work, he devoted himself mainly to investigating whether it is possible to divide a circular quadrant into two parts such that the line segments projected from the dividing point to the perpendicular diameters of the circle form a specific ratio. His solution, in turn, employed several curve constructions that led to equations containing cubic and quadratic terms.
Boyle and Frye (1975) emphasize that there are a number of other Persian scholars who occasionally wrote quatrains, including Avicenna, Ghazzali, and Tusi. He concludes that it is also possible that for Khayyam poetry was an amusement of his leisure hours: "these brief poems seem often to have been the work of scholars and scientists who composed them, perhaps, in moments of relaxation to edify or amuse the inner circle of their disciples".
This treatise on Euclid contains another contribution dealing with the theory of proportions and with the compounding of ratios. Khayyam discusses the relationship between the concept of ratio and the concept of number and explicitly raises various theoretical difficulties. In particular, he contributes to the theoretical study of the concept of irrational number. Displeased with Euclid's definition of equal ratios, he redefined the concept of a number by the use of a continuous fraction as the means of expressing a ratio. Rosenfeld and Youschkevitch (1973) argue that "by placing irrational quantities and numbers on the same operational scale, [Khayyam] began a true revolution in the doctrine of number." Likewise, it was noted by D. J. Struik that Omar was "on the road to that extension of the number concept which leads to the notion of the real number."
The lunar crater Omar Khayyam was named in his honour in 1970, as was the minor planet 3095 Omarkhayyam discovered by Soviet astronomer Lyudmila Zhuravlyova in 1980.
In the context of a piece entitled On the Knowledge Of the Principals of Existence, Khayyam endorses the Sufi path. Csillik (1960) suggests the possibility that Omar Khayyam could see in Sufism an ally against orthodox religiosity. Other commentators do not accept that Omar's poetry has an anti-religious agenda and interpret his references to wine and drunkenness in the conventional metaphorical sense common in Sufism. The French translator J. B. Nicolas held that Omar's constant exhortations to drink wine should not be taken literally, but should be regarded rather in the light of Sufi thought where rapturous intoxication by "wine" is to be understood as a metaphor for the enlightened state or divine rapture of baqaa. The view of Omar Khayyam as a Sufi was defended by Bjerregaard (1915), Idries Shah (1999), and Dougan (1991) who attributes the reputation of hedonism to the failings of FitzGerald's translation, arguing that Omar's poetry is to be understood as "deeply esoteric". On the other hand, Iranian experts such as Mohammad Ali Foroughi and Mojtaba Minovi rejected the hypothesis that Omar Khayyam was a Sufi. Foroughi stated that Khayyam's ideas may have been consistent with that of Sufis at times but there is no evidence that he was formally a Sufi. Aminrazavi (2007) states that "Sufi interpretation of Khayyam is possible only by reading into his Rubāʿīyyāt extensively and by stretching the content to fit the classical Sufi doctrine." Furthermore, Frye (1975) emphasizes that Khayyam was intensely disliked by a number of celebrated Sufi mystics who belonged to the same century. This includes Shams Tabrizi (spiritual guide of Rumi), Najm al-Din Daya who described Omar Khayyam as "an unhappy philosopher, atheist, and materialist", and Attar who regarded him not as a fellow-mystic but a free-thinking scientist who awaited punishments hereafter.
Hans Heinrich Schaeder in 1934 commented that the name of Omar Khayyam "is to be struck out from the history of Persian literature" due to the lack of any material that could confidently be attributed to him. De Blois (2004) presents a bibliography of the manuscript tradition, concluding pessimistically that the situation has not changed significantly since Schaeder's time. Five of the quatrains later attributed to Omar are found as early as 30 years after his death, quoted in Sindbad-Nameh. While this establishes that these specific verses were in circulation in Omar's time or shortly later, it doesn't imply that the verses must be his. De Blois concludes that at the least the process of attributing poetry to Omar Khayyam appears to have begun already in the 13th century. Edward Granville Browne (1906) notes the difficulty of disentangling authentic from spurious quatrains: "while it is certain that Khayyam wrote many quatrains, it is hardly possible, save in a few exceptional cases, to assert positively that he wrote any of those ascribed to him".
The Jalālī calendar was a true solar calendar where the duration of each month is equal to the time of the passage of the Sun across the corresponding sign of the Zodiac. The calendar reform introduced a unique 33-year intercalation cycle. As indicated by the works of Khazini, Khayyam's group implemented an intercalation system based on quadrennial and quinquennial leap years. Therefore, the calendar consisted of 25 ordinary years that included 365 days, and 8 leap years that included 366 days. The calendar remained in use across Greater Iran from the 11th to the 20th centuries. In 1911 the Jalali calendar became the official national calendar of Qajar Iran. In 1925 this calendar was simplified and the names of the months were modernized, resulting in the modern Iranian calendar. The Jalali calendar is more accurate than the Gregorian calendar of 1582, with an error of one day accumulating over 5,000 years, compared to one day every 3,330 years in the Gregorian calendar. Moritz Cantor considered it the most perfect calendar ever devised.
FitzGerald rendered Omar's name as "Tentmaker", and the anglicized name of "Omar the Tentmaker" resonated in English-speaking popular culture for a while. Thus, Nathan Haskell Dole published a novel called Omar, the Tentmaker: A Romance of Old Persia in 1898. Omar the Tentmaker of Naishapur is a historical novel by John Smith Clarke, published in 1910. "Omar the Tentmaker" is also the title of a 1914 play by Richard Walton Tully in an oriental setting, adapted as a silent film in 1922. US General Omar Bradley was given the nickname "Omar the Tent-Maker" in World War II.
There is a tradition of attributing poetry to Omar Khayyam, written in the form of quatrains (rubāʿiyāt رباعیات ). This poetry became widely known to the English-reading world in a translation by Edward FitzGerald (Rubaiyat of Omar Khayyam, 1859), which enjoyed great success in the Orientalism of the fin de siècle.
In effect, Khayyam's work is an effort to unify algebra and geometry. This particular geometric solution of cubic equations has been further investigated by M. Hachtroudi and extended to solving fourth-degree equations. Although similar methods had appeared sporadically since Menaechmus, and further developed by the 10th-century mathematician Abu al-Jud, Khayyam's work can be considered the first systematic study and the first exact method of solving cubic equations. The mathematician Woepcke (1851) who offered translations of Khayyam's algebra into French praised him for his "power of generalization and his rigorously systematic procedure."
Tusi's commentaries on Khayyam's treatment of parallels made its way to Europe. John Wallis, professor of geometry at Oxford, translated Tusi's commentary into Latin. Jesuit geometer Girolamo Saccheri, whose work (euclides ab omni naevo vindicatus, 1733) is generally considered as the first step in the eventual development of non-Euclidean geometry, was familiar with the work of Wallis. The American historian of mathematics, David Eugene Smith, mentions that Saccheri "used the same lemma as the one of Tusi, even lettering the figure in precisely the same way and using the lemma for the same purpose". He further says that "Tusi distinctly states that it is due to Omar Khayyam, and from the text, it seems clear that the latter was his inspirer."
Thomas Hyde was the first European to call attention to Omar and to translate one of his quatrains into Latin (Historia religionis veterum Persarum eorumque magorum, 1700). Western interest in Persia grew with the Orientalism movement in the 19th century. Joseph von Hammer-Purgstall (1774–1856) translated some of Khayyam's poems into German in 1818, and Gore Ouseley (1770–1844) into English in 1846, but Khayyam remained relatively unknown in the West until after the publication of Edward FitzGerald's Rubaiyat of Omar Khayyam in 1859. FitzGerald's work at first was unsuccessful but was popularised by Whitley Stokes from 1861 onward, and the work came to be greatly admired by the Pre-Raphaelites. In 1872 FitzGerald had a third edition printed which increased interest in the work in America. By the 1880s, the book was extremely well known throughout the English-speaking world, to the extent of the formation of numerous "Omar Khayyam Clubs" and a "fin de siècle cult of the Rubaiyat" Khayyam's poems have been translated into many languages; many of the more recent ones are more literal than that of FitzGerald.