Age, Biography and Wiki

Yasuharu Suematsu was born on 22 September, 1932 in Gifu, Japan. Discover Yasuharu Suematsu's Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 91 years old?

Popular As N/A
Occupation N/A
Age 92 years old
Zodiac Sign Virgo
Born 22 September, 1932
Birthday 22 September
Birthplace Gifu, Japan
Nationality Japan

We recommend you to check the complete list of Famous People born on 22 September. He is a member of famous with the age 92 years old group.

Yasuharu Suematsu Height, Weight & Measurements

At 92 years old, Yasuharu Suematsu height not available right now. We will update Yasuharu Suematsu's Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.

Family
Parents Not Available
Wife Not Available
Sibling Not Available
Children Not Available

Yasuharu Suematsu Net Worth

His net worth has been growing significantly in 2022-2023. So, how much is Yasuharu Suematsu worth at the age of 92 years old? Yasuharu Suematsu’s income source is mostly from being a successful . He is from Japan. We have estimated Yasuharu Suematsu's net worth , money, salary, income, and assets.

Net Worth in 2023 $1 Million - $5 Million
Salary in 2023 Under Review
Net Worth in 2022 Pending
Salary in 2022 Under Review
House Not Available
Cars Not Available
Source of Income

Yasuharu Suematsu Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia
Imdb

Timeline

1987

High-capacity and long-distance optical fiber communications in the lowest loss wavelength band of 1.5 micrometers use dynamic single mode lasers (DSM lasers), such as phase shift distributed feedback lasers and wavelength tunable lasers, as their light sources, and have progressed along with research and development of optical fiber, optical devices, modulation schemes, and the like. Phase shift distributed feedback lasers developed by this research have been commercially applied for long distances—for overland trunk systems (1987) and for intercontinental submarine cables (1992) (Fig. 8) —and continue to support the progress of the Internet to this day. Later, since around 2004, wavelength tunable lasers are being used as the light source to advance dense wavelength division multiplexing (D-WDM) systems and optical coherent fiber systems for multi-level modulation schemes. Optical fiber communications make up a highly dense communications network circling the globe tens of thousands of times and are also used in applications such as middle-distance Ethernets. Additionally, DSM lasers in the band of 1.5 micrometers are used for optical lines from the exchange center to the home in FTTH. The transmission performance of fiber represented a by-product of the transmission capacity and the distance has been increased yearly exponentially, as shown in Fig. 9. In such ways, the information transmission capability of optical fiber has reached several hundred thousand times as much as the coaxial cables preceding them and has significantly lowered the cost of transmitting the information. Reflecting this, the mid-1990s saw the network industry such as Yahoo, Google, and Rakuten appear one after the other. Optical fiber communications have progressed and the Internet has developed, and instantaneous transmission of a large volume of knowledge is now a daily occurrence. In 2018, the Internet population reached 39 billion, 52% of the world population. In the electrical communication era of the 1960s, large volumes of data, such as documents on which civilization depend, were circulated slowly in forms such as books. In contrast, the proliferation of high-capacity and long-distance optical fiber communications has allowed for large-volume information such as books to become used interactively in an instant. The research of optical fiber communications contributed to the rapid transition to a civilization based on the information and communications technology.

1980

On the other hand, the electro-tunable dynamic single-mode laser, which would be a goal of the Dynamic Single Mode Laser, is, a so-called, wavelength tunable laser that was proposed by Suematsu and his students in 1980 (Fig.7) and demonstrated in 1983. Later, the tuning wavelength range was increased by the introduction of distributed reflectors with multi-grating pitches by Yuichi Tohmori and Yuhzou Yoshikuni, and Larry Coldren. The electro-tunable dynamic single-mode laser is especially important because it could be finely tunable and also monolithically integrable together with other photonic devices which need the specific thermal tuning separately in the form of PICs (Photonic Integrated Circuits). It was around 2004, through the efforts of those involved, that this wavelength tunable laser was developed and used commercially in dense wavelength division multiplexing (D-WDM) systems and optical coherent systems. It became utilized in earnest around 2010.

1974

Among these, the phase-shift distributed feedback (DFB) laser that Suematsu and his students proposed in 1974 and demonstrated with Kazuhito Furuya in November 1983 (Fig.5) is a thermo-tunable dynamic single-mode laser which had a high rate of production yield, as cited by the 1985 Electronics Letter Premium Award, IEE, UK. Since the beginning of the 1990s, it had been consistently and widely used commercially as a standard laser for long-distance use, as awarded the 1994 C&C Prize. Often, a laser array is used to cover wide wavelength regions (Fig.6).

1972

First, in 1972–1974, Suematsu and his student proposed a single mode resonator that would consist of a refractive index waveguide for the transverse mode, and two distributed reflectors joined together with a phase shift by odd numbers of a half π for the axial single mode operation (Fig.2) . In the meantime, Suematsu pioneered materials for a mixed crystal of GaInAsP/InP for a semiconductor laser that would operate at a wavelength band of 1.5 micrometers—which causes minimal loss inside the optical fiber as Donald A. Keck et al. suggested in 1973— and continuously operates at room temperature, in July 1979. Following these preliminary achievements, Suematsu and his co-workers succeeded in creating an integrated laser with built-in distributed reflectors using a material in the band of 1.5 micrometers. In October 1980, Suematsu and his students built a dynamic single-mode laser that stably operates at a single mode even under rapid direct modulation (Fig.3 and Fig.4), and continuously operates at room temperature. This laser remained in stable operation mode even when the temperature was changed so that the wavelength could be tuned thermally within the 1.5 micrometers band. Thus, the thermo-tunable dynamic single-mode laser was born and triggered to develop a 1.5-micrometer high-speed fiber system, as cited by such as the 1983 Valdemar Poulsen Gold Medal, the Danish history of optical communication, and the 1986 David Sarnoff Award. Its spectral behavior was investigated profoundly to attain full single-mode operation. Meanwhile, research and development progressed in industries in areas such as optical fibers, optical circuits, optical devices, modulation schemes, and system structures. The actualization of the dynamic single-mode laser became an impetus to develop high-capacity and long-distance optical fiber communications, and it began to be applied commercially at the end of the 1980s.

1963

The earliest demonstration of optical fiber communication was performed by Suematsu and his students, on May 26, 1963, on the occasion of the open house of the Tokyo Institute of Technology (Fig.1). The light source was a helium-neon gas laser, the modulator was hand made modulator by use of ADP crystal, applied signal voice voltage of 1.200 volts, for polarization rotation in response to the voice signal, the optical bundle glass fiber for the transmission medium, and the photomultiplier tube for the detector. The original ADP reserved in the desiccator as well as the replica of that experiment, restored in 2008-7 as shown in Fig.1, was registered as a Future Technology Heritage, at the National Museum of Science, Japan, in 2019.

1932

Yasuharu Suematsu (末松 安晴, Suematsu Yasuharu) (born 1932) is a researcher and educator in optical communication technology. His research has included the development of Dynamic Single Mode Semiconductor Lasers for actuation and the development of high-capacity, long-distance optical fiber communications technology.

Yasuharu Suematsu was born on September 22, 1932, in Gifu, Japan. He received both his B.S. (1955) and Ph.D. (1960) from the Tokyo Institute of Technology. Afterward, he joined the faculty of the Tokyo Institute of Technology as a professor and became its president in 1989. Later he also held the position as first President of the newly founded Kochi University of Technology and later became Director General of the National Institute of Informatics. In 1993, he was elected a member of the National Academy of Engineering for contributions to the understanding and development of optical fibers, high-performance semiconductor lasers, and integrated optoelectronics.